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Abstract 
The objective of this work is to analyse the key determinants of electric vehicle uptake amongst early adopters. 

Transport accounts for about a quarter of Europe’s total greenhouse gas emissions and has not achieved 

similar reductions in emissions as other sectors. However, there is an opportunity to achieve lower emissions 

through the widespread use of electric vehicles. Due to the rising awareness of the link between emissions and 

global warming, the European Union has set serious targets for renewable energy and greenhouse gas 

emissions that member states must achieve by 2020 and 2030. Although considerable progress has been made 

in reaching targets, efforts in the transport sector have been lagging in many countries, with a significant boost 

required in electric vehicle roll-out if transport-specific targets are to be met. One reason for this lack of 

progress is possibly an incomplete understanding of the motivations behind consumer uptake, which in turn, 

hampers policy design to encourage adoption. Here, for the first time, the case study of Ireland is used to 

analyse socio-demographic and neighbourhood characteristics such as charging infrastructure, dealers and 

other EV adopters, to identify the key determinants of electric vehicle adoption in the early phase of 

technology diffusion.  From our exploratory data analysis, social class which represents whether the 

population consists of skilled, semi-skilled or unskilled workers, appears to be the principal factor affecting EV 

uptake in Ireland. This variable may proxy for income effects, implying that the average wealth of a 

neighbourhood matters for EV ownership. There also appears to be clustering in EV adopters, possibly due to 

unobserved peer effects. The OLS model performs poorly for our dataset. Our future work will help determine 

the significant predictors of adoption based on a spatial econometric approach that explicitly models 

relationships between agents in the model such that the restrictive assumptions of OLS models can be relaxed 

to allow for interdependence between individual actors.  

 

1. Introduction  
Given the urgency to stop global warming in its tracks and even reverse some of the anthropogenic 

damages already caused, countries worldwide are striving to reform their domestic energy policies 

such that future consumption and production processes are more sustainable. As shown in Figure 1 

(a), the transport sector accounts for a third of energy consumption in the European Union (EU) and 

is still heavily reliant on fossil fuels (European Environment Agency, 2017). This sector also accounts 

for a quarter of greenhouse gas emissions (GHGs) in the EU (European Commission, 2018). 

Additionally, energy consumption is growing - energy consumption in the EU-28 in 2015 was 25% 

higher than 1990 levels.  Road transport has accounted for a major share of this growth with a 20% 

increase in passenger car demand over this period. As seen in Figure 1 (b)-(d), GHG emissions from 

transport have been steadily rising in most countries in Europe, with road transport accounting for 

72.9% of total emissions from transport in EU-28 in 2014.  In this regard, renewables in the form of 

liquid biofuels as a transport fuel has seen rapid development. However, the average share of 



energy from renewable sources has increased only from 1.4% to 7.1% between 2004 and 2016. 

Moreover, the performance of countries has varied considerably, with the relative share of 

renewable energy in fuel consumption ranging from over 30% in Sweden to only 2% in Estonia. 

Electric vehicles (EVs) offer a viable alternative that could help member countries meet the common 

target that requires at least 10% of their transport fuels to come from renewable sources by 2020.  

 
(a) Share of transport in final energy consumption, EU-

28, 2015 

Source: Eurostat 

 
(b) Share of road transport in total GHG emissions 

from transport, EU-28, 2015 
Source: EEA 

 

 
(c) GHG emissions from transport over time, EU-28, 2014 

Source: EEA 

 

 

 

 

 



 
 

(d) Change in total GHG emissions from transport between 1990-2015, EU-28, 2015 

Source: EEA 

Figure 1 Contribution of transport to overall consumption and GHG emissions  

 

An EV is a vehicle that uses at least one electric motor for propulsion. A self-contained EV is usually 

powered by a battery, solar panels or a generator that converts fuel to electricity in the case of 

hybrids, or alternatively, through a collector system from off-vehicle electricity sources. The idea of 

an EV has been around from the mid-19th century. However, fossil-fuel based internal combustion 

engines (ICEs) remained the preferred vehicle propulsion technology until the 21st century, when 

technological advancements, increasing awareness of climate change and concern for energy 

security brought on a revival of interest in electricity as a power source for transportation.  

The key benefits of EVs are its potential to reduce carbon emissions that contribute to climate 

change and cause ecological damage. In addition, the resulting reduction in smog and pollution 

levels have immense public health benefits. Importantly, electrification of transport using renewable 

electricity reduces dependence on imported fossil fuels and expands the diversity of domestic fuel 

choices available to consumers since almost all electricity is produced domestically within countries. 

However, several studies have identified current EV adopters as early adopters, implying that the 

diffusion of EVs is still in the early stages, with the technology yet to reach the take-off point (Nayum 

et al., 2016; Plotz et al., 2014; Bockarjova et al., 2013). This is perhaps because the technology for 

EVs is still developing and EVs are yet to become financially competitive with ICEs. Besides, being a 



dynamically continuous innovation1 means that the adoption of EVs involves some behaviour change 

that may act as an additional barrier to adoption. 

Despite the challenges pertaining to EVs, transport must be electrified if countries are to meet their 

renewable energy targets for the transport sector. It is, therefore, crucial that planners and policy 

makers understand the diffusion process of EVs and aid in their rapid diffusion. The present research 

proposes that incentivising localised EV adoption could boost national uptake substantially. This 

paper aims to apply a spatial econometric approach at a fine geographical scale to the case study of 

Ireland to explore the causal relationship between charging infrastructure and EV adoption for the 

first time as well as to identify other neighbourhood characteristics that may determine early EV 

adoption.  

The paper is structured as follows. Section 2 provides an extensive literature review on the 

characteristics of EV adopters, explains the Irish context and lays out our contribution to the 

literature. Section 3 describes the data sources used and presents a summary of the exploratory 

data analysis techniques implemented. It also displays exploratory plots of the spatial dispersion of 

adopters, infrastructure and dealers. Results are presented in Section 4 with significant 

determinants of adoption clearly marked and their implications discussed. Section 5 provides some 

concluding remarks. The appendices provide background information on important concepts and 

findings. Specifically, Appendix A: Technology diffusion describes the theory of technology diffusion, 

Appendix B: Determinants of RET uptake tabulates the characteristics of Renewable Energy 

Technology (RET) adopters identified from the literature, and Appendix C: Data and Methods 

provides summary statistics for all variables in our dataset, explains terminology and provides the 

mathematical foundation behind the spatial statistics tools used in the analysis.     

 

2. Overview of the literature 

2.1 Drivers and barriers to EV uptake 

This paper categorises the main variables, triggers and underlying characteristics that underpin the 

adoption and diffusion of RETs into seven2 broad categories: economic, non-economic (but 

potentially monetisable), socio-demographic, spatial and the built environment, technical, 

behavioural and psychographic. Key non-spatial barriers and motivations for EV uptake are 

highlighted in this sub-section. Appendix B: Determinants of RET uptake provides the comprehensive 

list of characteristics that relate to RET adoption generally with an emphasis on EVs.   

There is consensus on the main technical challenges of EVs. Egbue and Long (2012) study technology 

enthusiasts to identify some socio-technical barriers to EV adoption. Battery range seems to be the 

biggest concern within this group while sustainability is less important than cost, performance or 

concerns surrounding charging infrastructure. The prospect of minimal maintenance requirements, 

potential to eliminate the use of petroleum and reduced GHGs are attractive features of EVs. 

Bockarjova et al. (2013) present results of a stated choice experiment showing that innovators and 

                                                           
1
 See Appendix A: Technology diffusion for a detailed description of the process of technology diffusion and types of 

innovations.  
2
 Eight, if legal factors are considered, such as the need for planning permission to install a residential solar PV system on 

the roof. This is not included here as it is not applicable to EV uptake.  



early adopters value EVs negatively relative to conventional vehicles predominantly due to the long 

charging times associated with fast charging rather than any inconvenience perceived for slow 

charging at home or work. Nayum et al. (2016) use choice-modelling and psychographic theories of 

behaviour to reveal that buyers of EVs tend to value convenience and performance less than those 

of conventional vehicles as EVs are usually second cars, although fuel efficiency is a common 

concern.  

 

Conversely, there is no definitive evidence on the role of socio-demographic characteristics. Biere et 

al. (2009) demonstrate that early adopters of EVs are likely to be those with a full-time job living in 

towns with less than 100,000 inhabitants. Plotz et al. (2014) further observe that early adopters of 

EVs have a distinct configuration of socio-economic and attitudinal characteristics. They tend to be 

middle-aged, male, with high socio-economic status, living in rural areas with several household 

members, often children, interested in trying out technical innovations, and less concerned with 

comfort. In contrast, Nayum et al. (2016) find that EV owners are significantly younger compared to 

conventional car owners but concur that they enjoy a significantly different socio-psychological 

profile from conventional car buyers in that they have more cars and children per household, a 

larger household size, are more likely to be working, with higher education, higher household 

income, and higher levels of awareness and acceptance of environmental problems, besides 

spending less time evaluating car attributes. However, Anable et al. (2011) show that socio-

demographic factors are less important, with low range anxiety and an EV-friendly social 

environment being stronger drivers.  Curtin et al. (2009) suggest that neither gender nor location are 

clear predictors of uptake.  

 

Certain socio-psychological factors positively influence uptake, including personal capabilities such 

as openness to innovative technology, high risk tolerance, image consciousness, social and personal 

norms, and favourable attitudes towards reducing the carbon footprint. Claudy discover that 

awareness of microgeneration technologies differs significantly amongst Irish consumer segments, 

with men more likely to have heard of microgeneration technologies than women. Egbue and Long 

(2012) also show that knowledge and perceptions differ across age, gender and education groups, 

influencing the level of uptake within different socio-demographic groups. Gardner et al.(2011) use 

the Theory of Planned Behaviour (TPB) model to find that social influence, experience and 

psychographics such as consumer perceptions and attitudes towards EVs are key factors determining 

uptake. Anable et al. (2011) note that openness to EV technology and a high willingness to pay are 

characteristics of early adopters. Busic-Sontic and Fuerst (2017) extend Roger’s Diffusion of 

Innovation model with the big five personality dimensions: openness to experience, 

conscientiousness, extraversion, agreeableness, neuroticism, to confirm that homeowners who are 

open to experience invest earlier in energy efficiency while agreeable homeowners tend to be 

laggards.  There is no conclusive evidence on whether environmental attitudes matter. Curtin et al. 

(2009) and Ziegler (2012) find that potential EV customers in the US value the environmental 

benefits offered by EVs and are willing to demonstrate their beliefs through their purchase decisions. 

In contrast, Hidrue et al. (2011) find that economic motives are a more decisive factor than 

environmental considerations. Moreover, Bockarjova et al. (2013) suggest that early adopters tend 

to value environmental benefits of EVs much less than later adopters.  



Overall, the primary advantages of EVs are its zero tailpipe CO2 emissions3, lower maintenance 

needs, and the potential independence it offers from fossil fuel energy (IET, 2011). A key barrier to 

adoption is its high upfront cost, although continuous technological development is leading to 

rapidly falling price of batteries, which constitutes roughly a third of the price of an EV (Egbue and 

Long, 2012). Moreover, EVs could become competitive with conventional vehicles at a sufficiently 

high gasoline price once uncertainties, such as regarding the standardisation of batteries across 

manufacturers and suppliers and the resale/scrap value of EVs, are resolved  (Becker et al., 2009). 

Furthermore, non-economic benefits such as exclusive high-occupancy vehicle (HOV) lane access 

tend to counteract some of the economic concerns (Nath, 2016). However, the limited range of EVs 

compared to ICEs still present a problem for long-distance journey planning, slowing down uptake. 

Range anxiety may, however, be less prevalent in the future when battery swapping possibilities 

become available besides opportunities to purchase the vehicle and battery separately. EVs also 

require a shift in driving behaviour in terms of charging times and remembering to charge, that may 

act as ‘hassle’ factors that discourage adoption (IET, 2011). Electricity tariffs may play a role here. 

The current payment infrastructure in many countries is a flat tariff rate and therefore rather rigid. 

However, variable prices for different charge types like full-charge and fast-charge and time-of-use 

tariffs incentivise charging during off-peak hours and shifts in charging behaviour generally, lowering 

variable costs to charge. 

 

2.2 The importance of spatial characteristics 
Spatial characteristics are key in RET diffusion. Gardner et al.(2011) show that people with similar 

incomes, age profiles and education levels often aggregate, creating pockets across space that are 

more suitable for technology uptake than others. In contrast, Sierzchula et al. (2014) indicate that 

aggregation of socio-demographic variables such as income and education levels are ambiguous 

predictors of adoption as non-adopters could also be highly educated and wealthy. Rather, EV-

specific characteristics such as charging infrastructure could potentially explain uptake better. 

Achtnicht et al. (2012) and Tran et al. (2013) recognise that a lack of charging availability slows down 

EV uptake. In Sierzchula et al. (2014)’s assessment of the role of financial incentives, charging 

infrastructure4 and socio-economic characteristics in EV adoption across 30 countries, charging 

infrastructure appears to be the best predictor of a country’s EV market share. Mersky et al. (2016) 

agree on the importance of charging infrastructure in Norway but remain undecided on whether the 

correlation of sales with charging stations results from a consumer incentive effect, or if charging 

stations are being built in response to local EV demand. Coffman et al. (2017) provide a helpful 

review on this topic and point out that although access to charging infrastructure and EV uptake are 

clearly related, there is no conclusive evidence yet on whether the presence of infrastructure drives 

adoption or vice-versa. McCoy and Lyons (2014) recognise this gap for Ireland and suggest improving 

their spatial model by integrating data on the existing charging infrastructure, as although still 

uncertain, proximity to public charging points likely influences the decision to purchase an EV.  

Axsen et al. (2009) demonstrate the potential importance of neighbour effects. Intangible social 

costs decrease with increased market share since the adoption of an innovative technology becomes 

more desirable when increasing uptake in the neighbourhood shifts cultural norms, changes social 
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 Although the green benefits of EVs are only realised when the fuel mix generating electricity is low carbon.      

4
 Calculated as each country’s total number of charging stations corrected for population.   



concerns, improves credibility, and enhances opportunities to learn from others. Exploiting this 

observation, Becker et al. (2009) build a network externalities model to estimate the maximum 

market share of EVs as a function of oil prices, possible purchase price incentives, driving habits and 

the number of other adopters. McCoy and Lyons (2014) implement an agent-based model (ABM) of 

innovation diffusion to simulate the adoption of EVs among Irish households. They find that mild 

peer effects5 could result in large clusters of adopters in certain areas even if overall adoption is low. 

Nath (2016) uses the TPB model and Rogers’ Diffusion of Innovations theory to demonstrate the 

importance of marketing channels, trusted information sources (e.g. developers or installers) and 

peer effects in the adoption decision. While innovators tend to decide independently of others, 

interpersonal interactions with other EV owners seem to have a much more profound impact on 

later adopters. 

There is a general dearth of spatial research in RET adoption, but there has been considerably more 

work on solar PV uptake than on EVs6. Graziano and Gillingham (2015) show that clustering in solar 

PV adoption does not simply follow the spatial distribution of income or population in Connecticut, 

US. Contrary to previous findings, smaller centres seem to contribute to PV adoption more than 

larger urban areas, in a wave-like centrifugal pattern. One new adoption in the previous 6 months 

increases the number of adoptions in a block group per year-quarter within 0.5 miles of the solar PV 

system by 0.44 systems on average. This effect diminishes with distance and time, implying that 

social interaction and visibility are key players in this process. Adoption reduces with housing density 

and the share of renter-occupied buildings, possibly due to a split incentive problem. Lastly, 

community engagement programmes such as the Solarize7 campaign have a significant and positive 

impact on adoption.  

 

Balta-Ozkan et al. (2015) also find significant regional spillover effects in solar PV adoption in the UK. 

Adoption not only follows patterns of solar irradiation but in addition, households that are smaller, 

and in highly polluted, less dense areas tend to be early adopters. Electricity demand, the average 

level of household education and housing type also define regional PV uptake. Local enterprise 

partnerships or third-sector organisations like charities and non-governmental organisations that 

coordinate environmental policies at sub-regional levels are other key players in the diffusion 

process. 

Likewise, Dharshing (2017) discovers that significant spatial spillover effects between neighbouring 

counties in Germany create ‘solar clusters’ over time. Regional PV uptake is not only determined by 

the similarities in solar radiation or demographic characteristics, but also by spatial dependence 

across neighbouring regions, where cross-regional spillovers can be caused by peer effects, clusters 

of local craftsmen or regional solar initiatives.  

 

                                                           
5
 Peer effects operate via two main channels: the passive influence from observing the presence or use of the technology 

in the neighbourhood, and the active influence through interpersonal communication with neighbours.  Peer effects have 

been widely studied in the technology adoption literature and their importance is generally acknowledged.  

6
 Both EVs and solar PV systems are visible technologies, i.e. they are in full view of neighbours and therefore, could 

espouse both passive and active peer effects in their adoption process. They differ technically: solar panel systems 
generate electricity for domestic use and export the surplus onto the grid, while EVs use electricity from the grid and 
potentially provide storage services to the electricity system when not in use.   
7
 See https://www.nrel.gov/docs/fy12osti/54738.pdf for details. 

https://www.nrel.gov/docs/fy12osti/54738.pdf


Rai and McAndrews (2012) identify perceived uncertainty and non-monetary costs as a key metric to 

explain why social and communication networks are important for technology diffusion. Rai et al. 

(2016) demonstrate that neighbourhood contact increases motivation, confidence, convenience, 

relevance, and trustworthiness, improving the chances of uptake. Both active and passive peer 

effects appear to create positive feedback loops that speed decision-making. Similarly, Schelly (2014) 

establishes that communities of information (e.g. energy fairs) positively influence adoption because 

they provide the context and perceptions of trustworthiness to potential early adopters before they 

receive any information relating to the technology. Sigrin et al. (2015) find that early adopters are 

more likely to be influenced by other solar owners as part of a home tour. In addition, trusted 

sources such as installer advertisements (via radio, TV), direct marketing by solar companies and 

personal contacts are valuable information channels. Rai et al. (2016) also show that direct 

marketing by a solar company, and either viewing or conversing with a neighbour who installed a 

solar panel acts as a spark event. However, Robinson and Rai (2015) demonstrate through an ABM 

that information diffusion alone does not predict technology adoption; information must diffuse to 

economically capable nodes.   

Finally, Palm (2017) studies peer effects using qualitative studies - active peer effects tend to be 

more important and propagate through existing and close social networks rather than through 

neighbours who do not already know each other. Active contact with peers helps confirm that the 

technology works as intended and with minimum hassle without necessarily providing any additional 

information about the technology.  Merely noticing a neighbour’s PV system does not automatically 

lead to direct contact and is hence not as helpful in inducing adoption. In an earlier study, Palm 

(2016) finds that both peer effects and local organisations supporting PV are important 

determinants of the diffusion of solar PVs in Sweden. Electric utilities are powerful influencers, 

acting as trusted organisations informing about and promoting solar energy at the initial stages of 

adoption.  

In summary, socio-demographic determinants such as household income, education, employment 

status and age are often spatially clustered. Neighbourhoods hosting individuals of higher social 

status, with bigger households and more children and cars in the family are more likely to adopt EVs. 

The housing stock in a certain locality may act as a barrier. Flats with no secure parking spaces for 

vehicle charging, for example, may not be suitable for EVs (IET, 2011). Neighbourhood effects may 

also seep in through interpersonal networks. Interpersonal communication helps in reducing 

perceived barriers related to low trialability and low observability when adopting an innovative 

technology. Peers may be able to directly help in decision-making, for instance, in selecting the best 

procurement mechanism. In addition, mere visibility of EVs in the neighbourhood may spark interest 

as the proximity of other adopters may indicate a changing social norm in that location. Moreover, 

suitably located EV dealers may assist in minimising hassle by providing reliable information and 

lowering transaction costs.   

 

2.3 The Irish context 
The transport sector accounted for 35% of primary energy consumption in Ireland in 2015 (SEAI, 

2016a). Furthermore, Ireland’s transport sector is heavily reliant on imported oil. To reduce its 

dependence on fossil fuels, Ireland is committed to ensure that 10% of its transport demand is met 

by renewable sources by 2020 under the EU Renewable Energy Directive (SEAI, 2016b). There are 



policies in place introduced by the Department of Transport, Tourism and Sport (DTTAS) such as the 

Biofuels Obligation Scheme that aim to expand the role of renewables in the transport sector 

(DTTAS, 2017). Studies have also confirmed that the introduction of EVs offer the potential to 

significantly reduce CO2 emissions and primary energy requirement on a per-km basis (SEAI, 2016b). 

Ireland embraces this fact through its commitment to a target of selling only “zero-emissions 

capable” cars and vans by 2030. However, in contrast to other countries that are aiming to expand 

their EV fleet by 2020 and banning combustion engines by 2025, Ireland has revised its targets 

downwards from 230,000 to 20,000 EVs on the road by 2020, due to lower-than-anticipated uptake 

and an unfavourable fuel price and infrastructure situation (O’Sullivan, 2017).  

There are currently around 3,000 EVs in Ireland, including Plug-in hybrid electric vehicles (PHEVs), 

Battery electric vehicles (BEVs), and Hybrid electric vehicles (HEVs). There are currently 11 unique EV 

models such as the BMQ i3, Renault Zoe, Hyundai Ioniq, Volkswagen e-Golf, Nissan Leaf and the 

Tesla model S introduced in 2017 (Irish EV Owners Association, 2018). These EVs are capable of 

conventional car speed, acceleration and power, and batteries last between six and ten years (ESB, 

2018). With rapid advancement in battery technology, the range has significantly improved with, for 

instance, the Mitsubishi i-MiEV having a range of 150km and the Tesla Model S having a range of 

420km. For certain models, the driver can also buy the car and lease the battery. Although prices 

remain higher than conventional vehicles, with some models costing over a €100,000, public 

incentives such as a €5,000 purchase grant, a zero rate of Vehicle Registration Tax (VRT) relief of up 

to €5,000, lower road tax of €120, reduced maintenance costs and significantly lower fuel costs 

greatly help to reduce overall costs (SEAI, 2017). Furthermore, in addition to free parking while 

charging, Ireland enjoys modern charging infrastructure financed by the Electricity Supply Board 

(ESB) with over 1,200 public electric charging points, making seamless travel around the country 

possible since 2007/08 (ESB, 2018).  

Ireland as a case study is particularly interesting given that average commuting distances are short 

compared to other European countries, with little distinction between urban and rural locations, 

making a case for adoption even in the absence of an extensive public charging infrastructure. The 

average Irish commute is under 15 km, with Dublin City, Cork City, and Galway City commuters living 

within 10 km of their workplace8 (CSO, 2016). Residents in Laois, a more rural setting, experience the 

longest commuting distances, at just over 25 km. The cities of Dublin, Cork and Galway jointly 

represent approximately 659,000 commuters, representing just under 54% of workers who 

commute by car, and 35% of total commuters. Consequently, Ireland may be highly suited to EV use 

as short, frequent journeys could largely mitigate concerns with range even as battery packs 

continue to become more efficient and economical. Most Irish EV users also prefer to charge at 

home, with the next best alternatives being fast-charging stations at car parks and petrol stations 

(Morrissey et al. 2016). Other types of charging infrastructure and at other locations may, therefore, 

be necessary solely to provide visibility for potential adopters and reassurance for existing users.  

However, although discounted night rate electricity, free access to public infrastructure, and 

different forms of charging are available, EVs are currently in the “innovator” to “early adopter” 

stage in Ireland. The availability of charge points and the time to charge are still major barriers. 

Public charging takes between 2 and 6 hours, home charging between 6 and 8 hours, and fast 
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 According to the Central Statistics Office (CSO) study, where commuting distances are calculated on a straight-line basis 

from home to workplace. 



charging around 25 minutes for an 80% charge (ESB, 2018). Charging infrastructure will likely need to 

be commercialised to accommodate further infrastructure investments, while battery technology 

advances further to make EVs fully competitive with conventional vehicles. On a positive note, with 

the introduction of new car models that keep expanding the choice set for potential consumers and 

autonomous cars and ride-sharing services equivalent to Uber rising in popularity, the prospects for 

EVs look more promising.  

 

2.4 Unique contribution 

The evidence on EV uptake is often mixed and differs from one context to another. From a socio-

demographic perspective, a suitable adopter profile could be a full-time worker in a multi-person 

household interested in trying out eco-friendly cars. Age, gender and location are more dubious 

predictors. However, EV adopters tend to be male, middle-aged, and either living in small to 

medium-sized cities with short commutes, or in rural locations with sufficient garage space for 

charging and driving longer distances. Government incentives and regulatory and tax policies such as 

fuel economy standards and fuel and carbon taxes may encourage uptake amongst other adopter 

profiles. 

Additionally, several studies have validated the significance of peer-to-peer neighbourhood effects 

for RET adoption. However, although there are externalities attached to home and neighbourhood 

charging infrastructure9, there is scant literature on the role of charging infrastructure in early EV 

adoption. There are some cross-country studies suggesting an association between these variables, 

but further study using country-specific data is needed, given that the distribution of charging 

infrastructure within countries is heterogenous.  Importantly, there are no studies yet that confirm 

the direction of causality between the availability and distribution of charge points and EV uptake.  

Our aim is to examine several socio-demographic and spatial characteristics to identify the 

significant determinants of regional EV uptake using Irish data at a granular spatial scale of 18-120 

households. Further, we would like to establish whether a causal link exists between charging 

infrastructure and EV uptake using a spatial econometric model that integrates the distance to the 

nearest charge point as an explanatory variable and explicitly models peer-to-peer interdependence. 

The present research, therefore, contributes to the literature by studying the EV diffusion process at 

a finer granular scale than has been carried out to date and incorporating neighbourhood features 

such as charging infrastructure that is crucially missing from previous research on EV uptake.  We 

also map EV uptake spatially which could help plan for future infrastructure upgrades as well as 

pinpoint geographical targets for incentivisation. This is because electricity grid systems have 

geographically variable capacities and although large-scale uptake of EVs is necessary, this will add 

further loads to the network during charging that could cause a network failure if not planned for.  
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 While localised EV adoption around charging infrastructure may create spatial dependencies that cause negative 

externalities by overloading stressed electricity network assets, conveniently located charge points could also create 
positive externalities by reducing range anxiety, thereby improving both perceived and actual utility in owning and using an 
EV.  



3. Data and methodology 

3.1 Data sources  

The ecars division within ESB collects and maintains a database of all new EV owners in Ireland up to 

December 2017, as each purchaser of a newly registered EV who qualified for a Sustainable Energy 

Authority of Ireland (SEAI) grant received a free home charge point from ecars until then. The 

database contains information on the approximate addresses of adopters, the dealer code of the 

dealer they purchased from, the car model purchased, installation date of home charge points and 

whether the installation was confirmed. Using the address information, we successfully geocoded 

2050 EV owners who had a home charge point installed between March 2011 and August 2017, out 

of 2093 addresses in the database. After removing purchasers of plug-in hybrids10, the final dataset 

contains the geolocations of 1680 BEV owners.   

Ecars also publishes a map for the location and real-time availability status of installed and planned 

public charge points.  There are currently 1,200 public charge points available nationwide in 

locations such as on-street, shopping centres, and car parks. There is at least one charge point in 

every town with 1,500 or more inhabitants. Fast charge points are located along main inter-urban 

routes at service stations and roadside cafés to cater for those on longer journeys. We successfully 

geocoded 772 charge point locations out of the 865 that had locational information attached on the 

map. Furthermore, the full list of EV dealers in Ireland with their up-to-date location and contact 

details is available from the SEAI website. We successfully geocoded 174 out of 177 addresses in that 

list.   

We conduct all analyses at the level of Small Areas11. This is the most disaggregated level for which 

key socio-demographic data are available from the 2016 Census. The Small Area Population Statistics 

(SAPS)12 dataset published by the CSO contain data relating to sex, age, marital status, families, 

housing, education, commuting and occupation, providing an in-depth picture of the socio-economic 

conditions for each of 18,641 Small Area communities in Ireland.  This data was made available for 

the first time in July 2017. Appendix C: Data and Methods provides summary statistics for our full 

dataset.  

 

3.2 Exploratory data analysis 
Figure 2 shows that despite a dip in adoption rates in 2013, EV ownership has been steadily rising 

over time, from only 23 EVs on the road in 2010 to 1759 EVs by the end of 201613. Figure 3 

demonstrates that out of seven distinct EV models, the Nissan Leaf appears to be by far the most 

popular in Ireland, constituting over 1200 adoptions by 2016, compared to the second-most popular, 

the Hyundai Ioniq Electric, at just around 200. This can be expected as the Nissan Leaf has been 

available longer, with other models entering the market much more recently.  
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 We exclude owners of plug-in hybrids as they have the option to only use the on-board combustion engine and seldom 

or never use the electric powertrain system, which could skew the results in our analysis.  
11

 Small Areas are areas of population comprising between 18 and 120 dwellings created by The National Institute of 
Regional and Spatial Analysis (NIRSA) on behalf of the Ordnance Survey Ireland (OSi) in consultation with the CSO. They 
were designed as the lowest level of geography for the compilation of statistics in line with data protection and generally 
comprise either complete or part of townlands or neighbourhoods.  
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 See http://www.cso.ie/en/census/census2016reports/census2016smallareapopulationstatistics/ for details. 
13

 Actual numbers may differ slightly from numbers presented here.  

http://www.cso.ie/en/census/census2016reports/census2016smallareapopulationstatistics/


 

 

Figure 2 Total and additional adoptions of EVs in Ireland over time 

Source: Author’s illustration using CSO data 

 
Figure 3 Car models by number of adopters in Ireland 

Source: Author’s illustration using ESB ecars data 

 

 

We use Esri’s ArcMap 10.414 to map our data in various forms, including x-y plots incorporating 

kernel density maps for EV adopters, charge points and EV dealers in Ireland, maps displaying the 

distribution of EV owners in and around the Dublin area, hotspot maps of EV adopters, and maps 
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 Esri or the Environmental Systems Research Institute is an international supplier of geographic information system (GIS) 

software, web GIS and geodatabase management applications. ArcMap is the primary component of Esri's ArcGIS suite of 
geospatial processing programmes. More information available here: http://www.esri-ireland.ie/.  

http://www.esri-ireland.ie/


showing EV adoption over time. All data are projected to the IRENET95 Irish Transverse Mercator 

(ITM) coordinate system for Ireland.   

 

Density Analysis 
We measure density as the expected counts per square mile. Locations of high density of EV 

adopters (marked in red) can be clearly differentiated in Figure 4 (a); these align with the areas that 

host the largest concentration of adopters. The regions of the highest density lie in and around 

Dublin county and extend to parts of neighbouring border counties of Meath, Kildare and Wicklow. 

Other regions of high and medium density are Cork city, and Limerick and Galway cities respectively. 

We also note from Figure 4 (b) and (c) that charge points and dealers also seem to primarily 

concentrate in and around Dublin and Cork.  This can be expected given that these are the two most 

populous regions in Ireland. 

 
(a) EV adopters 

 

 
(b) EV charge points 



 
(c) EV dealers 

 

Figure 4 Kernel density plots of expected counts of (a) EV adopters, (b) EV charge points and (c) EV dealers per 
square mile in Ireland 

Source: Author’s illustration using ESB ecars and SEAI data 

 

To look at EV adopters more closely, Figure 5 visualises the distribution of EVs in and around Dublin 

using three different metrics. The large area around Dublin airport seems to have the highest 

number of EVs when just using counts per small area. When counts are normalised to population, 

the data looks very different, with more smaller areas showing intense clustering of EV owners. This 

is clearer when using the shape area of the small areas census boundaries to normalise counts. In 

that case, many more small neighbourhoods rather than large areas stand out as areas of high 

density. Although we elaborate this pattern using the example of Dublin, this is probably true of 

other cities and counties that harbour clustering as well.    

 



 
(a) Counts 

 
(b) Counts per head 

 
(c) Counts per shape area 

Figure 5 Distribution of EVs in and around Dublin city by (a) counts per small area (b) counts normalised to 
population, and (c) densities per square Km 

Source: Author’s illustration using ESB ecars and CSO data 



 

Hotspot Analysis 
A more objective test of the statistical significance of clustering patterns is the hotspot analysis15. A 

hotspot analysis assumes a null hypothesis of complete spatial randomness and uses the z-scores 

and p-values it generates to calculate the chances that the observed patterns in the data result from 

random spatial processes16. To run the tool, two parameters need to be specified: a distance band 

representing a distance at which the data displays significant clustering and a conceptualisation of 

spatial relationships defining what constitutes a neighbourhood and how neighbouring features 

might influence each other within a specific research framework. The hotspot analysis then 

compares whether each neighbourhood is significantly different from the whole study area, yielding 

a map of statistically significant clusters of high values (hot spots) and low values (cold spots). Hot 

spots mean that neighbouring features and the study feature are alike while cold spots imply that 

neighbouring features are dissimilar to the study feature.  

A formal method to discover the distance band at which clustering is most pronounced in our data is 

to calculate the Moran’s I statistic for spatial autocorrelation at multiple distances17. Moran’s I is a 

measure of spatial autocorrelation iterated over various distances that helps identify the distance at 

which clustering is most conspicuous. Using this tool, the spatial scale at which spatial processes 

appear to be most marked for EV adopters is at 2819.05m18. We are, however, interested in 

neighbourhood patterns, so we expect an appropriate radius to be around 1 mile (1609.34m) given 

that this is a walkable distance, near enough to reach neighbouring adopters, charging facilities or 

dealers with ease. Consequently, we consider a distance that is somewhere between 1609.34m and 

2819.05m to be a more reasonable approximation of the distance at which spatial processes might 

be active in our data. We rerun the statistic at shorter distances to find that, although not as 

pronounced, clustering occurs even at 2000m19. Hence, we choose to use this distance for the 

hotspot analysis. We also select the best conceptualisation of spatial relationships which, in our 

case, is the zone of indifference20. Figure 6 displays the results of the analysis at two levels of 
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 The hotspot analysis uses the Getis-Ord Gi* statistic. See Appendix C: Data and Methods for details. 

 
16 A p-value gives the probability that the observed spatial pattern was created by some random process. A low p-value 

implies it is very unlikely that the observed spatial pattern is the result of random processes. P-values of 0.1, 0.05 and 0.01 
mean we can be 90, 95 and 99% confident that a feature belongs to a cluster of either high or low values. Z-scores move 
inversely with p-values and denote the standard deviations; they are positive for hotspots and negative for cold spots. Both 
z-scores and p-values are associated with the standard normal distribution. Very high or very low (negative) z-scores, 
corresponding with very low p-values and are found in the tails of the normal distribution. 

17
 See Appendix C: Data and Methods for the mathematical foundation underlying this test.  

 
18

 The z-score from running the Moran’s I statistic at 2819.05m is 2.808 with a corresponding p-value of 0.005.      
 
19

 The Moran’s I test at 2000m yields a Moran’s Index of 0.051 with a corresponding z-score of 3.457 and a p-value of 

0.0005. 

 
20

 In an inverse distance specification, all features influence all other features, but the farther away something is, the 
smaller the impact. In the case of a fixed distance band, neighbours within a specified distance are weighted equally while 
features outside the specified distance have a weight of 0. We consider the zone of indifference to be a superior 
representation of our data as it combines features of both the inverse distance and fixed distance bands. Consequently, it 
uses a fixed distance band for the target feature, but once the critical distance is exceeded, it does not impose a sharp 
boundary on neighbouring features included in target feature computations. Instead, the weighting indicating the level of 
influence tapers off.  



geographical granularity. The first panel shows the hot spots for EV adopters using fishnet grids. This 

calculates densities by dividing up the landscape into equal-sized grid cells, ignoring dissimilarly-sized 

and arbitrary political boundaries. The second panel recalculates these values for small areas census 

boundaries.   

 
(a) Fishnet grid 

 
(b) Small areas boundaries 

 
Figure 6 Optimised hot spot analysis using (a) fishnet grids and (b) small areas as defined by the CSO 

Source: Author’s illustration using ESB ecars and CSO data 

 

The maps are symbolised, where hot spots are statistically significant clusters of high values shown 

in red and cold spots are statistically significant clusters of low values shown in blue. Hot spots do 

not necessarily correspond with the highest values if these values occur in isolation. The values are 

determined for each neighbourhood rather than for single points in space and are compared to the 

average for the entire study space, i.e. the Republic of Ireland. As we suspect, we see that Dublin 

and Cork are intense hot spots for EV adopters21. Moreover, running the high-low cluster analysis 
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 An average nearest neighbour analysis at 2000m returns a z-score of -52.098 while a global Moran’s I test returns a z-

score of 3.632, both implying that there is a less than 1% likelihood that this clustered pattern could be caused by random 
chance.  

 



reveals that the clusters are mostly high-clusters22. This confirms that there is meaningful 

aggregation of EV adopters. Although charge points appear to be mildly clustered at a shorter 

distance of 1000m23, there does not seem to be any spatial autocorrelation for dealers at any scale. 

A hotspot analysis of the data (not displayed here), however, reveals some high clustering of dealers 

and charge points in a small area in and around Dublin city. This might mean that the distribution of 

charge points and dealers is largely random across space, except in the Dublin city area.  This is 

expected given that charge points and dealers generally need to be evenly distributed over space to 

reach more customers but there may be more of them in areas of high population density.   

 

Temporal analysis   
Figure 7 displays the distribution of EV adopters over time overlaid on population density. It is 

interesting to note that adoption first began in South Dublin and gradually spread to areas of high 

population density in the centre and north of Dublin. Since 2012, diffusion appears to have been 

largely even across space although South Dublin may have a higher concentration of adopters today. 

 

 
(a) 2011-17 

 
(b) 2011 
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 Given the z-score of 2.005, there is a less than 5% likelihood that this high-clustered pattern could be the result of 

random chance. The high-low cluster analysis uses the General G statistic. See Appendix C: Data and Methods for details.    
 
23

 A z-score of 1.744 implies that there is a less than 10% likelihood that this clustered pattern could be the result of 
random chance.  



 
(c) 2012 

 
(d) 2013 

 
(e) 2014 

 
(f) 2015 



 
(g) 2016 

 
(h) 2017 

 
Figure 7 EV adoption over time overlaid on population density maps 

Source: Author’s illustration using ESB ecars and CSO data 

Spatial analysis 
The clustering in the landscape indicates that there are underlying spatial processes at work. From 

Figure 5 and Figure 7, we may infer that neighbourhood effects do influence adoption rates, with 

uptake likely originating in small areas and propagating to larger areas later. It is likely that peer 

effects play a role in the diffusion process given that new adoptions appear to be situated close to 

regions of earlier uptake. Further, it may be that adopter clusters are aligned with socio-

demographic data, public charging infrastructure or dealers in the area.  We, therefore, want to 

analyse the underlying processes that might cause the clustering in EV adopters at a neighbourhood 

scale and answer questions such as what it is about Dublin that is leading to hotspots of EV adopters 

in this area. If there is clustering in some socio-demographic variables in the same locations as the 

EV adopter data, e.g. if high education and income levels correspond with high adoption rates in 

Dublin, we could hypothesise possible causal relationships between adoption and these factors. 

However, this kind of data analysis does not automatically imply any sort of causation.  

We will start with a Random Forest classifier24 and follow up with an Ordinary Least Squares (OLS) 

regression analysis to test these relationships formally.  A random forest classifier fits several 

decision tree classifiers to different sub-samples of the dataset, leading to higher accuracy and 
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 See https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm for details on the Random Forest 
Classification approach.  

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm


simultaneously avoiding over-fitting. Hyperparameters25 are optimised by stratified 5-fold cross-

validation to split the data into training and test sets. The key predictors identified from this 

approach are fed into the OLS model to test the relationships via a linear regression approach.  

 

4. Results  

Exploratory data analysis 
The data analysed comprises relevant socio-demographic variables corresponding to small areas, 

specifically, gender, age, ethnicity, marital status, employment status, social class, educational level, 

field of study, type of dwelling, household type, ownership status, building size, family size, family 

cycle, family type, car ownership, commute time and duration, population distribution, count of EV 

adopters, count of charge points, and count of dealers. The count of EV adopters is our variable of 

interest. All variables are normalised by population to aid accurate comparison as population differs 

across small areas. Any values resulting in division by zeros are replaced by zeros.  

Table 1 shows that our dependent variable includes a sizeable proportion of zeros. While there are 

16,892 small areas with no adopters, only 1 has an adopter count of 15. Figure 8 displays histograms 

for all three neighbourhood variables – adopters, charge points and dealers – on the logged scale, 

showing the same overall pattern for all.  

Table 1 Distribution of EV adopters across Small Areas 

0 16892 

1 1520 

2 183 

3 34 

4 9 

5 2 

15 1 

 

 

Figure 8 Counts of adopters, charge points and dealers 

Source: Author’s illustration using ESB ecars and SEAI data 
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 Hyperparameters are parameters of a prior distribution in Bayesian statistics; the term helps distinguish these from 
standard model parameters. Hyperparameter optimisation is the problem of identifying a set of optimal hyperparameters 
for a learning algorithm in machine learning.  



 

Given that we expect the count of charge points and dealers to be associated with the count of 

adopters, we run some scatter plots as shown in Figure 9. However, there does not seem to be any 

obvious correlation between these variables in the context of small areas. We, therefore, drop 

counts of dealers and charge points from subsequent analyses.   

 

 

Figure 9 Scatter plots of adopters, charge points and dealers 

Source: Author’s illustration using ESB ecars and SEAI data 

 

Due to the large imbalances in the outcome variable data, that is, between EV adopters and the non-

adopters, a Random Forest classifier is implemented to model the data, with a binary response 

variable - whether EV was adopted or not in the small area. The performance of the model is 

assessed using the metrics - Receiver operating characteristic (ROC) and Matthews correlation 

coefficient (MCC) - which are measures of the quality of binary classifications26. Overall ROC area 

under the curve (AUC) of the model is 0.6727. The MCC is 0.166. This considers true and false 

positives and negatives and can be used even when there are considerable size imbalances among 
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 See http://gim.unmc.edu/dxtests/ROC1.htm and https://lettier.github.io/posts/2016-08-05-matthews-correlation-
coefficient.html for details on the interpretation of ROC and MCC curves.  
27

 The detailed model results are: Fold 0, ROC AUC: 0.661; fold 1, ROC AUC: 0.644; fold 2, ROC AUC: 0.681; fold 3, ROC AUC: 
0.727; fold 4, ROC AUC: 0.655.  

http://gim.unmc.edu/dxtests/ROC1.htm
https://lettier.github.io/posts/2016-08-05-matthews-correlation-coefficient.html
https://lettier.github.io/posts/2016-08-05-matthews-correlation-coefficient.html


various classes. +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse 

prediction. The folds are obtained by maintaining a percentage of samples in each set. Following 

parameter optimisation, 28 decision trees are used in the model. The total number of features used 

to find the best split is the square root of total number of features, and the minimum number of 

samples for each leaf node is fixed at 30. The model performance is comparatively poor; hence, 

feature engineering is required to improve future model performance. The overall ROC and MCC 

curves are shown in Figure 10.  

 

 

Figure 10 Receiver operating characteristic (ROC) and Matthews correlation coefficient (MCC) curve 

Source: Random forest classification model output 

 

Individual variables are grouped under 21 broad categories as in Table 2. Table 2 provides the main 

results of this analysis and lists the features in order of importance. Social class seems to be the best 

predictor of EV adoption, while means of commute, duration of commute, commute time, family 

type, educational level, field of study, and household size in terms of number of rooms are other key 

variables explaining adoption. Further details of features and relative importance can be found in 

Appendix C: Data and Methods 

 

Table 2 Relative feature importance of variables determined by the random forest classification model 

Variable Importance 
Social class             0.108 

Means of commute          0.077 

Family type              0.075 

Educational level 0.073 

Number of rooms 0.067 

Commute journey time (duration)  0.066 

Field of study 0.066 

Commute time (of day) 0.055 

Marital status 0.048 

Number of motor cars owned 0.045 

Home ownership 0.044 



Family cycle             0.04 

Ethnicity   0.035 

Employment status 0.031 

Household size           0.03 

Population 0.028 

Age 0.028 

Dwellings 0.025 

Family size              0.023 

Household type 0.021 

Gender 0.012 

 

We run an OLS model using some of the key predictors identified in the random forest classifier. The 

model is as below:   

                 

                                                                    

                                     

                                                 

                                                          

 

Table 3 displays the results from the OLS model. All explanatory variables are statistically significant 

at the 5% level and positively related to the count of adopters, implying that as social status, 

educational level, household size and total population increase in a small area, so does the level of 

regional EV uptake. However, the model performs poorly, given an R-squared value of 0.047, a log-

likelihood of -8170.2 and low AIC and BIC values of 0.0002. Although the Durbin-Watson test yields a 

value of 1.945, implying that there is no autocorrelation in the residuals, a significant Jacque-Bera 

test statistic of 14137153.521 suggests that the residuals are biased possibly because some of the 

relationships between the variables are non-linear. Any future model will correct for this 

misspecification by log or power transforming the variables as appropriate.  

 

Table 3 OLS results 

Count of adopters OLS (N=18640) 
Total Population 0.001*** 

(0.000) 

Eight or more room households 0.255*** 
(0.028) 

Professional workers 0.226** 
(0.082) 

Managerial and technical occupations 0.151*** 
(0.038) 

Postgraduate degree or diploma 0.191** 
(0.063) 

Intercept -0.144*** 
(0.011) 

Note: Standard error in parentheses. *, ** and *** denote significance at the 10%, 5% and 1% level 

respectively. 



 

Limitations 
The results so far are essentially limited. The national EV market is small relative to overall 

automobile sales. Consequently, EV adopters still represent too small a proportion of the total 

population to provide conclusive evidence at the level of small areas. Any future work could, 

therefore, aggregate data to a higher level such as electoral divisions or counties. However, since 

small areas are strictly nested within these larger areas, the small areas analysis helps counteract the 

modifiable areal unit problem (MAUP)28 which is bigger the larger the land area is. The key problem 

though is that OLS is unsuitable when the outcome variable takes on a limited set of values, 

including a substantial proportion of zeros, and therefore variations of this model for limited 

dependent variable data must be used in future analyses.  

The OLS is also inappropriate for two forms of underlying spatial processes - spillovers in outcomes 

and clustering in unobservables. The OLS performs well only when clustering occurs in observed 

covariates which when included in the model then explain most of the variation in the outcome. 

Since the OLS model has poor predictive power for our dataset, we can conclude that observed 

socio-demographic data alone cannot explain the variation in EV uptake at the level of small areas, 

unobserved variables must play a vital role and, thus, our model is fundamentally incomplete. We, 

therefore, plan to implement a spatial model for limited dependent variable data that allows for 

interdependence in unobservables and outcomes besides incorporating the distance to charge 

points and dealers as explanatory variables rather than their counts in small areas. Specifically, a 

spatial weights matrix will be defined and combined with a series of relevant fixed effects to model 

clustering in unobservables and/or interdependencies due to peer effects. However, the geocoding 

exercise underlying our EV adopter data is essentially approximate. This will still affect the analysis at 

the fine geographical scale used regardless of the model we choose, which is a risk we must accept. 

Lastly, to explain how contagion mechanisms operate in this context will benefit from a detailed 

qualitative study involving focus groups and in-depth interviews that is also planned as future work.  

The spatial model and the qualitative study will complete this piece of research.  

 

5. Conclusions 
Transportation systems are complex socio-technical systems and consumers within them are not 

always rational decision-makers basing decisions on tangible constraints such as cost and 

performance metrics. The technology adoption literature unearths a plethora of factors that may 

determine EV adoption, including intangible characteristics such as peer-to-peer communication, 

level of trustworthiness, and perceptions of cost. Some individual characteristics such as income 

levels and age may make someone a suitable adopter. However, these factors are often context 

specific, and the vast research on adopter characteristics has often produced mixed results. 

Neighbourhood effects have, on the other hand, only recently gained attention, although they seem 

to play a significant role in decision-making and may even prove to be more universal. Most of the 
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 The MAUP helps understand the concept of ecological fallacy - the assumption that an individual from a specific group or 
area will exhibit a trait that is predominant in the group altogether. i.e. that all areas are unified. Aggregating counts to 
polygons automatically introduces this problem. Changing the pattern and scaling of the zones changes the pattern of 
aggregated outcomes.  



research on neighbour effects have surrounded solar PV adoption. This work is an attempt to extend 

this field to EVs using the case study of Ireland.  

From our exploratory data analysis, social class, which consists of whether the population is 

comprised of professional workers, managerial and technical staff, non-manual labour, skilled 

manual workforce, semi-skilled workers, unskilled labour force, or all those who fall in the gainfully 

occupied but unknown category, appears to be the most important factor affecting EV uptake in 

Ireland. This variable may proxy for income effects, and as such, the wealthier a community is, the 

more likely the area may be to host EV owners. Other strong predictors are means of commute, 

duration of commute and journey time, family type, educational level, field of study, and household 

size. Variables relating to daily commute are expected to influence EV uptake given that EV owners 

would generally be car drivers, driving medium distances, and commuting at a time of day that 

maximises the benefits of owning an EV. Likewise, EV owners are usually highly educated and being 

trained in certain disciplines might be more favourable for uptake. Finally, family and household size 

affect adoption given that EVs tend to be second cars in families with children, and a large house is 

more likely to have garage space for charging than otherwise, facilitating uptake. 

Given the limitations of our OLS model, our future work will identify key predictors using a spatial 

model that relaxes the restrictive assumptions of the OLS approach to allow for underlying spatial 

processes. This framework will explicitly model relationships between agents, consequently, 

representing the data more accurately and hopefully yielding more reliable results.  
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Appendix A: Technology diffusion 
Theories of diffusion are the basis for models that help us understand current adoption patterns and 

predict the rate and pattern of future diffusion of innovations29. Technology adoption refers to 

individual uptake of a new device whereas technology diffusion is an aggregate-level concept 

concerning the process of the spread of an innovative technology within a group, community or 

country. Of the many theories of diffusion, the most cited is the one proposed by Rogers that uses a 

bell-shaped curve to describe the individual decision-making process (Rogers, 1995). Rogers 

partitioned a bell-shaped curve into its standard deviations from the average time of adoption to 

form five categories of innovation adopters:  

(1) innovators (the first 2.5% to adopt),  

(2) early adopters (the next 13.5% of adopters),  

(3) the early majority (34%),  

(4) the late majority (34%), and  

(5) laggards (the last 16% to adopt).  

This categorisation simplifies the stages of technology uptake within a heterogenous population by 

reflecting how the members of a social system learn from the experience and imitate the behaviour 

of the innovators and earlier adopters to form a new adopter group (Sperling, 1991). Transitions 

between the different adopter groups, therefore, demarcate the distinct stages or timing of 

innovation adoption. As consumers make their individual adoption decisions, these aggregate to 

produce the timing and pattern of innovation diffusion, depicted by an S-shaped curve as in Erreur ! 

Source du renvoi introuvable.Figure 11. The diffusion process is driven largely by interpersonal 

communication channels such as word-of-mouth and marketing efforts (Grubler, 1991).  

 

Figure 11 Technology adoption and technology diffusion curves 

Source: Everett Rogers, Diffusion of Innovations, 1995 

                                                           
29

 An innovation is a new idea, method or device that is transformative to varying degrees. There are three types of 
innovations relevant to the pattern and rate of technology diffusion (Goldsmith & Foxall, 2003). A continuous innovation 
makes modest enhancements to existing technologies and has the least disrupting effect on established consumption 
patterns (e.g. heat pumps). A dynamically continuous innovation has somewhat more disrupting effects through the 
introduction of a previously-unknown version of a product that does not, however, change usage patterns drastically (e.g. 
electric vehicles). Finally, a discontinuous innovation entails the creation of a completely new consumer product that 
requires the establishment of new consumption patterns (e.g. solar photovoltaics (PVs)). 

 



The different adopter groups vary in their degree of resistance to change due to their diversity in 

expectations, experience and various socio-demographic and psychological characteristics (Sperling, 

1991). While “innovators” tend to be relatively price insensitive, younger, of higher social status, 

better educated, socially forward and/or more financially lucid people, the general populace may 

need more certainty about the advantages of an innovation versus the status quo before they 

consider adopting. Moreover, “innovators” tend to embrace novelty, have a better level of product 

knowledge, as well as expertise in consumption that other groups may lack, such that their adoption 

decisions are massively influential on the adoption decisions of the proximate group, the “early 

adopters”.  

Over time, consumers become aware of the innovation, depending on the structure of the social 

system and the available information channels (Grubler, 1991). On completion of the learning 

process, consumers may be persuaded to purchase, based on perceived costs and benefits of the 

technology. They then take a decision based on their beliefs, following which they implement it by 

adopting new behaviours, and finally, validating their decision and choosing to extend their 

commitment to change.  

To explain why an innovation is adopted requires a close inspection of how the innovation compares 

with the status quo. In general, five factors matter according to Rogers (Rogers, 1995):  

(1) Relative advantage; (2) Compatibility; (3) Complexity; (4) Trialability; and (5) Observability.  

Why innovative ideas and technology spread is also predominantly a study of the socio-psychological 

characteristics of consumers. Innovations penetrate a given user base in stages, corresponding to 

their psychological and social profiles, viz. their personality, values, opinions, attitudes, interests, 

and lifestyles (Schirtzinger, 2016). Moreover, consumers need to be aware of technologies before 

they embark on their decision-making process (Claudy et al., 2010).  

Most adoptions take place locally and as measuring localised, psychographic behaviour is particularly 

challenging, the exact point of market penetration into adopter groups can be difficult to measure. 

Consequently, transitions from one group to another is far from smooth, implying that the consumer 

segmentation proposed by Rogers is only an approximation (Schirtzinger, 2016). Additionally, public 

polices and incentives that may alter consumer risk perceptions serve to blur market dynamics, 

skewing the proposed psychographic sequence further.  

  

Appendix B: Determinants of RET uptake 
RET adoption depends on many factors, as tabulated in Table 4. Drivers and barriers to the adoption 

of technologies are based on these underlying adopter characteristics. For instance, living in a rural 

household implies a higher likelihood of owning a garage (hence, a home recharging point), acting as 

a driver of EV ownership. Not having enough roof space to install a solar panel, on the other hand, 

may act as a barrier to solar PV adoption. The following table lists the common characteristics that 

relate to the adoption of RETs generally and highlights some (in red) that are very particular to EVs. 

The characteristics are categorised as economic, non-economic (potentially monetizable), socio-

demographic, spatial and the built environment, technical, behavioural and psychographic.  There 

could be some interaction and overlap between some of these factors.  



 

 

Table 4 Summary of the determinants of uptake of RETs 

Determinants of uptake of RETs  

Economic  Upfront cost (including price of battery), annual operation & 

maintenance costs (including variable cost to charge), 

transaction costs, perceived total annual cost, government 

incentives & policies, fossil fuel inflation, electricity price 

trajectory, electricity tariff structure, energy cost savings, 

payment method, resale value of home/car, insurance costs.  

Non-economic (monetizable) Non-financial benefits: comfort & convenience, aesthetics: 

visual, noise, vibration, emissions reductions, special privileges 

such as high-occupancy vehicle (HOV) lane access.  

Socio-demographic Homeownership, household size/space, number of children, 

age, gender, ethnicity, income, unemployment, education, 

experience with technology, technical competence, 

political/religious affiliation, personal ties with the non-

renewables sector, peer effects, information channels, number 

of other adopters (network externalities). 

Spatial/Building characteristics  Geolocation, housing density, building type, co-adoption of 

other technology, availability of & distance to local charging 

points (i.e. available infrastructure), size of city/town/village, 

commuting distance (including inner city driving).   

Technical Existing home infrastructure, possibility of switching between 

technologies, fuel economy/energy efficiency, ease of use, 

reliability, performance expectations, safety, charging time 

(day/night), recharging time duration, possibility of 

independent purchase of car and battery, battery swap 

possibilities, longevity of battery, range, mass, power, MOT 

service schedule, towing potential. 

Psychographic Environmental concern, preference for energy independence, 

awareness and knowledge, interest in technology, price 

sensitivity, risk preference, perception of risk of technology, 

attitudes towards innovation & uncertainty, openness to 

experience, agreeableness, leadership tendencies, image, 

social and personal norms. 

Behavioural Habits/current use behaviour, inertia.  

N.B. Points in red are factors that relate specifically to EV adoption while the rest is also applicable to other 

RETs. 

 



 

 

Appendix C: Data and Methods 
Data 
Table 5 lists the summary statistics for each variable in our dataset. 

Table 5 Summary statistics 

Variable Mean Std. Dev. Min Max 

Population 255.451          88.167         50 1629 

% male 49.52 3.543 24.096 86.135 

% female 50.48   3.543   13.865 75.904 

% aged ≤ 18  25.302 8.368 0 63.13 

% aged 19-34 21.043 10.612 0 98.718 

% aged 35-54 28.541               5.34 0 52.597 

% aged 55-74 19.24                   8.925 0 77 

% aged ≥ 75 5.874    5.107        0 60.51 

% white Irish 82.064 16.219 .845       100 

% other white/ Irish traveller 10.45       9.538        0 71.429 

% minorities 7.486     8.923        0 98.873 

% single 53.446 8.996  24.918        100 

% married 37.389        8.893        0 65.185 

% widowed/ separated/divorced  9.165        4.25         0 60.563 

% employed 53.294  11.829  .59   93.103 

% unemployed 31.921  9.633    5.405    99.115 

% retired 14.785      8.637           0 78.947 

%, professional technical/managerial  35.678      15.552         0 85.833 

% non-manual/ skilled manual 31.699    8.1        0 65.926 

% semi-skilled/ unskilled 14.41     6.851        0 50.917 

% all others gainfully occupied, unknown 18.212 11.481  .855        100 

% only primary/no formal 

education/unknown 

18.904          10.926         0 100 

% lower or upper secondary 33.018             9.407         0 100 

% technical training 19.702        5.849          0 55.932 

% undergraduate  18.318          8.757        0 100 

% postgraduate 10.058  8.088          0 76.471 

% AHSS, Education 22.521           11.088         0 100 

% STEM 13.439     4.999         0 61.765 

% Farming/health  10.069            4.708         0 50 

% Services/others/unknown 53.971          15.275       0 100 

% occupied permanent dwellings 85.562   11.613  12.136        100 

% vacant homes 14.438    11.613          0   87.864 

% house/bungalow 86.62    24.469         0   100 



% other housing 13.38        24.469       0 100 

% owned outright, with mortgage or loan 67.857   24.074          0         100 

% rented 27.324          22.657          0 100 

% occupied free of rent or unknown 4.819         4.193          0 97.5 

% 1-3 room households 16.682       17.504           0 96.97 

% 4-7 room households 63.585            16.613           0 100 

% ≥ 8 room households 14.165     13.055           0 88.764 

% unknown sized households 5.567         4.24         0 97.5 

% single or 2-person households 52.774   13.835       2.5         100 

% 3 or 4-person households 33.877         9.496         0 69.512 

% 5 or more-person households 13.35          6.967         0 48.75 

% families without children 31.034          12.698         0 100 

% families with up to 2 children 52.245          10.151        0 100 

% families with 3 or 4 children 15.509          7.53        0 100 

% families with 5 or more children 1.212  1.704       0   22.222 

% pre-family cycle 10.507           12.461      0 100 

% empty nest families 10.203        5.503        0 85.714 

% retired families 10.323          7.745        0 75 

% pre-school or early school families 21.527         10.221      0 100 

% pre-adolescent or adolescent families 22.817      9.323       0 81.034 

% adult families 24.622            10.933       0 100 

% one-person households 24.093     11.088    .746    98.113 

% married or cohabiting couples without 

children households 

19.106    6.925        0 56.667 

% married or cohabiting couples with 

children 

34.735        13.486           0 83.784 

% one parent family with children with and 

without others 

11.46      6.858           0 58.064 

% couple and others with and without 

children 

3.041            2.248           0 20 

% two or more non-related persons 

households, non-family households and 

relations households, or two or more non-

related persons households 

7.564           7.671           0 97.5 

% no motor car 15.267   15.576          0 93.333 

% 1 motor car 41.004 10.604 1.111   72.857 

% 2 motor cars 33.33        15.762         0 84.615 

% 3 motor cars 5.631       4.423         0 31.746 

% 4 or more motor cars or unknown 4.769          3.862          0 97.5 

% commute ≤ 15 minutes 33.256      13.108       0 90.206 

% commute between 1/4 hour - under 1/2 

hour 

28.463       9.007         0 81.457 

% commute between 1/2 hour - under 3/4 16.892       7.336         0 46.202 



hour 

% commute between 3/4 hour - under 1 

hour 

5.653             3.622           0 25 

% commute between 1 hour - under 90 

minutes 

5.787        3.886           0 30.12 

% commute ≥ 90 minutes 2.256       1.863        0 15.663 

% unknown commute time 7.693        5.871        0 98.873 

% travel on foot or bicycle 17.488        15.253           0 94.466 

% travel by bus, minibus or coach 10.136      6.772         0 48.295 

% travel by train, DART or LUAS 2.469     5.063          0 48.052 

% car driver 38.872       11.079       0 81.538 

% car passenger 18.002          8.884        0 55.6 

% travel by van 4.37     3.101       0 27.273 

% travel by other means (including lorry, 

motorcycle, scooter, unknown) 

5.321     5.241       0 98.873 

% work mainly at or from home 3.342      3.29         0 31.482 

% commute before 06:30 am 5.674      3.238         0 35.965 

% commute between 06:30 - 07:00 am 6.984             3.114       0 25 

% commute between 07:01 - 07:30 am 8.93   3.695            0 27.928 

% commute between 07:31 - 08:00 am 14.584     5.153        0 42.857 

% commute between 08:01 - 08:30 am 20.256  6.807       0 60.14 

% commute between 08:31 - 09:00 am 22.105       8.042        0 73.404 

% commute between 09:01 - 09:30 am 8.553      6.347       0 52.239 

% commute after 09:30 7.571      4.132       0 46.364 

% unknown commute start time 5.343       5.472       0 98.873 

Count of adopters .11         .384        0 15 

Count of charge points .03            .229        0 6 

Count of dealers .009                     .117 0   5 

NB. Minorities include Black/Black Irish, Asian/Asian Irish, others and unknown 
Married includes same-sex civil partnership 
Unemployed includes those looking for their first job, student, looking after home/family, lost or given up previous job, or 
unable to work due to permanent sickness or disability or other 
Technical training includes higher certificate, advanced certificate/completed apprenticeship, technical or vocational 
qualification 
Undergraduate includes ordinary bachelor’s degree, national diploma, honours bachelor’s degree and/or professional 
qualification 
Postgraduate includes postgraduate diploma, degree, Doctorate (PhD) or higher 
AHSS, Education includes Art, Education and teacher training, Humanities, Social sciences, Business or Law 
STEM includes Science, mathematics, computing, engineering, manufacturing or construction 
Farming/health includes Agriculture, veterinary, health and welfare 
Vacant homes include dwellings representing the temporarily absent, unoccupied holiday homes, others 
Other housing includes Flat/Apartment, Bed-sit, Caravan, mobile home or unknown 
Rental accommodation can be from private landlord, local authority or voluntary/co-operative housing body 

  

Spatial data analysis tools 

Global tools test the existence of overall clustering in the data, i.e. they test whether objects with 
similar attributes are close to each other. Tools that identify local clusters test the relation between 



each object’s attribute value with that of its neighbours. Both groups of tools operate by comparing 
the distance between the objects in “attribute space” i.e. how similar objects are (summarised as a Y 
matrix) with the distance between the objects in spatial space, which may be non-spatial weights 
such as travel time and not necessarily based on geometric properties such as Euclidean distance 
(summarised as a W matrix). While Global measures consider the Y and W matrices for the entire 
study area, local measures of patterns only accounts for the Y and W matrices for neighbours.  

The incremental spatial autocorrelation tool runs the Global Moran’s I tool for spatial 
autocorrelation for a series of increasing distances, measuring the intensity of spatial clustering for 
each distance. The intensity of clustering is determined by the z-score returned. Typically, as the 
distance increases, so does the z-score, indicating intensification of clustering. At some distance 
(where the W matrix is set to 0), the z-score peaks, which is the point of the highest positive 
autocorrelation. There may be multiple peaks in the data.  

The mathematics behind the Global Moran’s I statistic is set out below: 

 

The hot spot analysis, on the other hand, is a local tool that calculates the Getis-Ord Gi* statistic for 
each feature in the dataset to produce a z-score for the degree of high-low clustering. To be a 
statistically significant hot spot, a feature will have a high value and be surrounded by other features 
with high values. The local sum for a feature and its neighbours is compared proportionally to the 
sum of all features. A statistically significant z-score results when the local sum is much different 
than the expected local sum, and that difference is too large to be the result of random chance.  

The Getis-Ord Gi* statistic formula is displayed below: 



 

The Spatial Autocorrelation test using the Global Moran’s I tool for EV adopters in our dataset yields 

a Moran’s Index of 0.051 with a corresponding z-score of 3.456 and a p-value of 0. 0.0005 at a 

distance threshold of 2000m. The Observed General G statistic for high-low clustering yields an 

observed general G value of 0.0006 with a corresponding z-score of 2.399 and a p-value of 0.016 at 

the same distance threshold. All analyses use the zone of indifference as the conceptualisation of 

spatial relationships. The graphical output of these tests is displayed in Figure 12.  

 
(a) Spatial Autocorrelation Report 

 
(b) High-Low Clustering Report 
 

Figure 12 Spatial Autocorrelation and High-Low clustering reports 

Source: Spatial analysis GIS model output 

 

The Average Nearest Neighbour tool measures the distance between each feature centroid and its 

nearest neighbour’s centroid location and averages all nearest neighbour distances. If the average 

distance is less than the average for a hypothetical random distribution, the distribution of the 

features being analysed is considered clustered, and vice versa. The average nearest neighbour ratio 

is calculated as the observed average distance divided by the expected average distance based on a 

hypothetical random distribution with the same number of features covering the same total area. At 



a ratio of less than 1, the pattern exhibits clustering, while at a ratio of greater than 1, the pattern 

exhibits dispersion. Our average nearest neighbour analysis corroborates the previous findings of 

clustering for EV adopters by returning a nearest neighbour ratio of 0.434 and a corresponding z-

score and p-value of -43.434 and 0.000 respectively.  

Similarly, the Multi-distance spatial cluster analysis (Ripley’s K Function) determines whether 

features, or the values associated with features, exhibit statistically significant clustering or 

dispersion over a range of distances. When the observed K value is larger than the expected K value 

for a distance, the distribution is more clustered than a random distribution at that scale of analysis, 

and vice versa. The graphical output in Figure 13 seems to confirm that although EV adopters clearly 

cluster in space at multiple distances, this is less likely to be true for charge points or dealers.  

 

 
(a) EV adopters 

 

 
(b) EV Charge points 

 

 
(c) EV dealers 

 

Figure 13 Multi-distance spatial cluster analysis for EV adopters, charge points and dealers 

Source: Spatial analysis GIS model output 

 

Anselin local Moran’s I statistic lies at the heart of Cluster and Outlier Analysis. Although like a 

hotspot analysis, this local tool identifies spatial clusters of features with high or low values as well 

as spatial outliers. For each feature with a statistically significant p-value, there is an associated z-

score that determines whether the feature is part of a cluster or is an outlier. A positive value for I 

indicates that a feature has neighbouring features with similarly high or low attribute values, i.e. this 

feature is part of a cluster. A negative value for I indicates that a feature has neighbouring features 

with dissimilar values, i.e. this feature is an outlier. From our cluster and outlier analysis, we find a 

few high outliers in and around Dublin. This is useful insight if we were to perform an in-depth 

analysis of where EV adopters locate in every neighbourhood in Dublin county. High and low clusters 

may form from neighbourhood spillover effects. However, there are other spatial processes 

underlying outliers, which may be interesting to explore in future work.  

 

Machine learning model results 
Table 6 presents the results from the random forest classification model.  The model shows the 

relative importance of a set of predictors, which informs our OLS model.  
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Table 6 Top 20 features by importance in Random Forest classification model 

 Feature  Importance 
Managerial and technical occupations 
  

0.037 

8 or more room households   0.036 

Art, Education and teacher training, 
Humanities, Social Sciences, Business or Law
  

0.03 

Total population  
  

0.028 

Ordinary bachelor’s degree, national 
diploma, honours bachelor’s degree and/or 
professional qualification   
 

0.02 

Postgraduate diploma, degree, Doctorate 
(PhD) or higher  
 

0.017 

Semi-skilled workers 
 

0.016 

Professional workers   
 

0.016 

Total motor cars owned 
  

0.015 

Single   
 

0.015 

Primary education or no formal education 
 

0.015 

Permanent dwellings   
 

0.015 

Unskilled workers  
 

0.012 

Skilled manual  workers 
 

0.012 

Married (including same sex civil partnership)  
  

0.012 

Commute to work or school between 1 hour 
– under 1 ½ hours  
 

0.011 

Total household - number of persons per 
household  
 

0.011 

Commute to work or school by Train, DART 
or LUAS   

0.011 

Field of study - Services, other subjects or not 
stated    
 

0.01 

Science, mathematics, computing, 
engineering, manufacturing or construction
  

0.01 


