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Abstract

This paper shows that the Intergovernmental Panel on Climate Change (IPCC) can take advantage of her

position over the report of climate knowledge to mitigate the inefficiency of the level of green house gases emissions

in international environmental agreements (IEA). I model an IEA as a game of contribution to a public bad. In

reporting confidence levels over the theories that could predict the impact of emissions, the IPCC plays a cheap

talk game with IEA participants. The presence of ambiguity over these theories allows to account for a unique

sequential equilibrium in the game under standard assumptions. This result sheds new light upon the role of

scientific advising in uncertainty, supporting the view that it can contribute to restore economic efficiency.

Keywords : Ambiguity, contribution to a public bad, cheap talk, climate change, international environmental

agreements
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1 Introduction

This paper explores the strategic influence of the Intergovernmental Panel on Climate Change (IPCC) on interna-

tional environmental agreements (IEA). The IPCC is an intergovernmental body of scientists, under the supervision

of the United Nations, dedicated to establishing the state of scientific knowledge on climate change. Among her

tasks, she has to convey all scientifically certified models of climate change, allowing to understand the impact of

green house gas (GHG) emissions over the global temperature increase. IEA are where emission policies regarding

climate change are negotiated between countries, and can formally be seen as a game of contribution to a public

bad (GHG) under uncertainty. More precisely, countries face a situation of model uncertainty, a situation in which

different data generating mechanisms are plausible regarding global warming. This corresponds to a case of Knigh-

tian uncertainty, or ambiguity, where events do not have a precise, objective probability assignment. Consequently,

the IPCC can have an important influence on the resulting IEA. Her task is one of strategic communication with

the countries, through which she can act as a social planner.

Figure 1: Main probability densities over temperature increase.
Source: Millner et al. 2013

One of the most peculiar aspects of scientific knowledge over climate change is its degree of uncertainty. As overall

consensus exists, no unique description of the physical phenomena we are facing has emerged, leading instead to
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various possible scenarios for the future. Scenarios have multiple possible probabilities, corresponding to the different

models which could explain climate change, as illustrated by figure 1. In addition of reporting scenarios and models

to the public and the global decision makers, the IPCC also provides a confidence ranking of the theories it conveys.

This is done through the use of a specific nomenclature (see Mastrandrea et al. (2010)). Confidence assessments, a

self-determined qualitative notion, are used to rank statements of probability. The question I examine here is how

such a tool can serve the IPCC in a game of strategic communication with the negotiating countries. While the

informational clarity of this nomenclature has been discussed in the literature (see Risbey and Kandlikar (2007),

Budescu et al. (2009)), this question has not yet been addressed.

The choice of a confidence ranking can be modelled as a game of communication played by the IPCC, as a sender,

and the countries, as receivers. As argued by Tol (2011), the IPCC has a position of monopoly on the report

of climate knowledge, and can be considered as the only sender in that context. While climate models assessing

the probability of various scenarios are known by all, the IPCC’s confidence ranking, as second order beliefs over

prospective theories, is a non certifiable information. Yet, it can serve her interest if properly chosen. In particular,

the IPCC can behave as a social planner, who aims at maximising the social welfare. Although formally equivalent

to a game of contribution to a public good, IEA are a problem of contribution to a global public bad. Their driving

aspect is free-riding: all countries have an individual interest in emitting green house gazes (GHG) as it ultimately

represents economic growth. At the same time, they are all better off in having the total level of emission as low as

possible as it directly impacts global warming and ultimately their welfare. Overall, the total level of emission will

be higher than the one chosen by a social planner. For the IPCC, maximising the social welfare means compensating

for the inefficiency of the IEA. In doing so, she will systematically be biased with respect to the countries. This

asymmetry of interests and the nature of the information conveyed makes the game played one of cheap talk à la

Crawford and Sobel (1982).

In the literature on social planning regarding emission policies, the specific impact of the scientific uncertainty

surrounding climate change on the chosen emission policies has been pointed out as essential (a review of it and of

its economic modelling can be found in Pindyck (2007)). In particular, it has been argued that model uncertainty

and the resulting ambiguity calls for the use of non-expected utility frameworks. In particular, models of ambiguity

aversion have been proposed. An individual is exposed to ambiguity when the expected payoff to his strategy varies

with probabilities over which he is uncertain. An ambiguity averse individual will tend to favour strategies that

reduce that exposure. Application to climate social planning can be found in Lange and Treich (2008) and Millner
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et al. (2013) who both use the smooth ambiguity model of Klibanoff et al. (2005). In this paper I will assume that

countries are max-min expected utility maximisers (MEU) à la Gilboa and Schmeidler (1989), the most widespread

decision criteria capturing the idea of ambiguity aversion. In the following, I will argue this assumption to be both

normatively and positively grounded. To the best of my knowledge, this definition of the countries preferences is

new in the IEA literature. Recent research focuses on the impact of uncertainty in IEA, but assumes expected

utility preferences under risk. Na and Shin (1998) were the first to take this route. Finus and Pintassilgo (2013)

added risk behaviour to the picture. The MEU assumption on the countries preference makes the cheap talk game

over climate models relatively new. Ambiguity in general cheap talk has already been introduced by Kellner and

Le Quement (2018) regarding Ellsbergian communication strategies. In my case, communication is standard, and

the ambiguity is over the type of the sender.

In the following, I consider a two period game with two countries with heterogeneous preferences and a third party,

the IPCC. A cheap talk game is played in the first period and a contribution to a public bad game consequently

in the second. I call a Bayesian Nash equilibrium on the countries sub-game an agreement and the resulting total

emissions level the outcome of the game. I show that there is a unique sequential equilibrium of the game. Whatever

her type, at equilibrium, the IPCC will be credible in pointing out a subset of climate theories as the most likely. As

a result, the agreement between countries will be reached on that basis. My results are to be read in normative terms.

They show that it is possible for the IPCC to better the social welfare through the choice of her communication.

2 A game of contribution to a public bad under ambiguity

Setup. I consider a emission game where two countries have to decide what level of GHG they want to emit. Let

P = {1, 2} be the set of countries. S = S1×S2 is the set of strategies and ∀i ∈ P,Si = [0, 1], is a level of emission for

player i. s = 1 corresponds to the maximum conceivable level of emissions and s = 0 to the minimum conceivable

emission level. Both countries thus have the same bounds on their emission choice, which corresponds to countries

of equivalent economic importance. One could think of China and the USA, who’s decision often drives IEA. Note

that this assumption is not necessary for the results of this paper (the set of strategy only needs to be bounded).

Yet, by focusing on major players, it has the merit of simplicity.

I further define L = {l ∈ [0, 2]|s1 + s2 = l}, the set of total level of emission of all countries. Each player’s payoff
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is positively function of their emissions (which generates wealth) and negatively function of the total amount of

emissions due to global warming. The exact impact of total emissions over each player’s welfare is unknown to all

countries. Let di : L×Ω → R+ be the function that maps global emissions into the well-being of player i, where Ω

is the finite set of possible states of nature. It represents the commonly accepted set of possible scenarios that the

scientific community has established for global warming. As a consequence Ω is assumed to be finite and equally

distinguished by all countries.

Note that damages are heterogeneous among countries: for a given scenario of say rising water, the impact on

China’s economy, which is mostly concentrated on its coastline activities, is presumably not the same than on the

USA where wealth rests more on the tertiary sector. As it is usually done in the IEA literature (see Eichberger

and Kelsey (2002) for an example), I will assume di to be increasing and strictly convex in l. It corresponds to the

assumption that whatever the scenario you consider, the higher the emission, the higher the damages. I also impose

∀ω ∈ Ω, di(0, ω) = 0 such that whatever the state of the world, the minimal level of emission of all countries lead

to no damage. A direct consequence is that di is always positive.

The utility functions of player i is defined as follows :

ui(si, s−i) = si − di(l, ω)

For convenience, I will assume the utility of countries to be always positive, such that: ∀l ∈ L and ∀ω ∈ Ω,

l ≥ di(l, ω).

It thus appears clearly that the beliefs countries hold over the possible states of nature is central in their decision.

Yet, knowledge over Ω is scarce. Various theories exist among climate scientist regarding the likelihood of each

scenario and it is not possible to discard one of them by lack of sufficient scientific understanding. Yet, they can

be formalised under the form of a probabilistic estimation over the possible states of nature. Climate theories

correspond to a finite set of probability distribution over states of the world, {p1, ..., pm}, such that no theory

predicts the same expected damage. Formally: ∀i ∈ P and ∀p, q ∈ {p1, ..., pm}, p ̸= q ⇒
∑

ω∈Ω p(ω)di(l, ω) ̸=∑
ω∈Ω q(ω)di(l, ω). I call the convex hull of that set C = co({p1, ..., pm}) the available common knowledge on

climate change.
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Countries’ decision making. In order to model the way countries act towards ambiguity I choose to assume

that the countries are max-min decision maker (MEU) à la Gilboa and Schmeidler (1989). This can be justified

both on positive and normative terms. Since Ellsberg (1961), experimental results have supported the view that

individuals exhibit ambiguity aversion. MEU preferences are the most used formal representation of that behaviour.

Equally, on the normative side, many authors, including Gilboa and Marinacci (2016) and Gilboa et al. (2009), have

argued that ambiguity aversion is not necessarily less rational than Savage’s subjective expected utility axioms.

I call B the Borel σ-algebra on C and B ∈ B the beliefs of player i at equilibrium. To evaluate a strategy, player

i chooses the probability distribution in B that minimises its expected utility. Thus, for si ∈ Si :

Vi(si, s−i) = minp∈Bsi −
∑
ω∈Ω

p(ω)di(l, ω)

I call pi ∈ ∆(Ω) the corresponding probability distribution for player i. Note that as di and dj might differ,

countries need not to select the same distribution in B. I then have:

Vi(si, s−i) = si − d̂i(l)

where d̂i(l) = minp∈Bi

∑
ω∈Ω p(ω)d(l, ω) is the expected value of d for player i.

In the next section, I study as a benchmark situation the sub-game played by the countries, for a common set of

beliefs B ∈ B.

3 Countries agreement under ambiguity

3.1 Agreements with homogeneous damages

I first assume that countries have the same damage function d1 = d2. For a given set of beliefs B ∈ B, the MEU

decision rule leads countries to select the same probability distribution to evaluate a given act, such that d̂1 = d̂2.
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I define l∗1(B) such that l∗1(B) = argmaxl∈Ll − d̂1(l) and for any si ∈ Si, I call BRj(si) ∈ Sj the best response

of player j to si. I start by deriving the best response function for a given player.

Lemma 1. ∀si ∈ Si, si > l∗1 is a strictly dominated strategy and the best response of player i to sj ∈ Sj is

BRi(sj) =



0 if l∗1(B)− sj < 0

l∗1 − sj if 0 ≤ l∗1(B)− sj < 1

1 if l∗1(B)− sj ≥ 1

Note that the best response function is entirely driven by the optimal level of total emission he believes in. This

result comes from the convexity of the damage function.

Proposition 2. When p1 = p2 = p, the set of all possible agreements is :

{(s1, s2) ∈ [0, 1]2|s1 + s2 = l∗1(B)}

The outcome of the game is thus always l∗1. Thus, G(C) = l∗1(B).

Under homogeneous damage functions, an infinity of agreements can be reached and a unique symmetric agree-

ment among them as predicted by Olson (1965). The outcome of the game is always the same. It thus falls under

the more general result stated in Warr (1983) which shows that when a single public good is provided at positive

levels by private individuals, its provision is unaffected by a redistribution of income. Yet, this is also a quite

inflexible result: the presence of multiple countries, if they have the same damage function, does not influence the

outcome of the game. They will collectively emit as much as if only one player (or a centralised decision maker)
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was choosing an emission level for the both of them.

3.2 Agreements with heterogeneous damages

I now turn to the more general case where countries have heterogeneous damage functions: for (i, j) ∈ P2, di ̸= dj .

For B ∈ B the set of beliefs of the players at equilibrium, I further define l∗i (B) = argmaxl∈Ll − d̂i(l) and

l∗j (B) = argmaxl∈Ll− d̂j(l) the optimal levels of emissions of both countries. In generality, l∗i (B) and l∗j (B) might

not necessarily differ.

Remark 3. When damage functions and probability distribution among countries vary the optimal level of total

emission might be the same.

Intuitively, MEU countries might end up with l∗i (B) = l∗j (B) when the differences in the damage function are

offset by the choice of the probability distribution in B. This corresponds to the case of spurious unanimity studied

in Mongin (1995). It then follows from lemma 1 that the outcome of the game is the same under spurious unanimity

than under homogeneous damage functions.

In the following I will focus on the case l∗i (B) < l∗j (B) :

Proposition 4. When damages are heterogeneous a unique agreement is possible. The corresponding outcome is

the optimal level of emission for one or the other player if both are on the same side of 1. If not, the outcome is 1.

The outcome of the game is l∗i (B) when l∗i (B) ≥ 1. The corresponding agreement is (l∗i (B)− 1, 1).

The outcome of the game is l∗j (B) when l∗j (B) ≤ 1. The corresponding agreement is (0, l∗j (B)).

The outcome of the game is 1 when l∗j (B) ≥ 1 and l∗i (B) < 1. The corresponding agreement is (0, 1).

Thus, overall, if countries have different belief, there are three possible cases. In each of them, a unique agreement
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can be reached, different in every case and leading to a different outcome. The outcome of the game might be the

optimal level of global emission for one or the other player, or can be equal to one. The game boils down to a high

outcome when both countries belief is that optimal emissions are high and to a low outcome when both beliefs over

optimal emissions are low. When the beliefs of the countries are contradictory, in the sense that the optimal level

they believe in is on both sides of one, the game can boil down to one as an outcome.

Note that the important reduction of Nash equilibrium - from a continuum to a unique one - is made possible

by the presence of uncertainty and the assumption that both countries have a bounded strategy set. Would the

strategy set be unbounded, there would still be a continuum of equilibrium.

4 The IPCC’s strategic information transmission

Let us now introduce the IPCC as a strategic party in charge of summarising and reporting the state of knowledge

over Ω. It has no direct leverage on emissions, but can choose to convey a message concerning the available

knowledge on climate change, by pointing out which theories are the most likely. In practice, this is done by the use

of the IPCC’s confidence nomenclature (Mastrandrea et al., 2010). The current guidance offers five qualifiers for

expressing confidence: very low, low, medium, high, and very high. For each theory, the choice of the appropriate

qualifier is left to the authors of the IPCC report. Although the justification for a level of confidence in a theory has

scientific foundation, I will assume that in the eyes of the countries, second order beliefs over prospective scenarios

are non certifiable claims.

Let M be the set of messages the IPCC can send to the countries and G : M → L that maps a given message to

the outcome of the countries’ sub-game. I deduce from the study of the countries’ sub-game that G is a function,

as, for any set of beliefs B ∈ B, there is a unique outcome of the game. I write C = {pθ}θ∈[0,1] the reordering of C

such that G is an increasing function of θ. Thus, M = [0, 1]. Intuitively, I have arranged the climate theories from

the one which derives the lowest final emission level to the one who derives the highest. I deduce from the previous

section that :
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G(θ) =



lj({pθ}) when lj({pθ}) ≤ 1

1 when li({pθ}) ≤ 1 ≤ lj({pθ})

li({pθ}) when 1 ≤ li({pθ})

By construction G is an increasing function of θ. Countries being MEU, I can extend the domain of G to M̃ , the

algebra of all subsets on [0, 1], such that I get that for (θ, θ) ∈ [0, 1]2:

G([θ, θ[) =



lj({pθ}) when lj({pθ}) ≤ 1

1 when li({pθ}) ≤ 1 ≤ lj({pθ})

li({pθ}) when 1 ≤ li({pθ})

By a slight abuse of notation I will write G(θ) the outcome of the countries’ sub-game when the IPCC’s message

is {θ}. I will further assume, without lost of generality (as level of emissions are normalised), that C is such that

there is a theory that leads to a non emission outcome of the game and one that leads to a maximal emission

outcome. Formally G(0) = 0 and G(1) = 2.

IPCC’s decision making I will assume that the IPCC cares only of what it thinks to be the social optima. Yet,

to the contrary of a problem of decision making under certainty or risk, no true probability distribution over Ω is

available. As a consequence, in order to determine what it thinks to be the social optima, the IPCC has to reach

some internal consensus on the probability distribution on which to rely. The explicit modelling of the formation

of a consensus being beyond the scope of this paper, I will assume that the IPCC behaves as if it had learned the

true probability distribution θ ∈ C. This knowledge is her private information. As a consequence, in the eyes of the

countries, C is also the set of types T of the IPCC.

Once she has learned her type, the IPCC has to choose which elements of C to point out as being the most likely.

A strategy σ : T → M̃ for the IPCC consists in transmitting a message m ∈ M̃ to the countries regarding C.
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As a consequence, the utility of the IPCC is given by :

U0(m,ω) = G(m)− d(G(m), ω)

where d = di + dj . Having learned her type θ, she evaluates her utility by:

Vθ(m) = G(m)−
∑
ω∈Ω

fθ(ω)d(G(m), ω)dω (1)

I further define l∗(θ) = argmaxl∈Ll −
∫
ω∈Ω

fθ(ω)d(l, ω)dω the optimal level of emission for the IPCC when it is

of type θ. A consequence of equation (1) is that the IPCC is systematically biased with respect to the countries.

It has always an interest of sending a message that would lead them to emit less, in order to compensate for the

inefficiency of the IEA. As a consequence, she behaves as a sender in Crawford and Sobel’s framework.

In the following I show that there is a unique sequential equilibrium (σ, s∗i , s
∗
j ) of the game played by both the

countries and the IPCC. In other words, whatever her type, the IPCC will always send an imprecise yet credible

message to the countries that will influence the outcome of the IEA.

Proposition 5. There is (fθ1 , ..., fθm) ∈ Tm, Ck = [fθk , fθk+1
[, such that there is a unique sequential equilibrium

in the game where any type fθ ∈ Ck of IPCC sends a costless message mk = [θk, θk+1[ to the countries, i.e

σ(fθ) = [θk, θk+1[ leading to an outcome G(θk).

Surprisingly the cheap talk game played by the IPCC and MEU countries on the set of climate theories happens

to possess a unique sequential equilibrium. This is a strong result, as it constitutes a refinement compared to

the canonical case of Crawford and Sobel (1982), which has several possible equilibrium. It is due to the MEU

preferences of the countries. In addition, this assumption makes it possible to exhibit a constructive proof of the

equilibrium.

What we learn from proposition 5 is that, at equilibrium, an institution in the position of the IPCC can act

in order to reduce the inefficiency in which IEA are stuck. If countries are MEU, she can take advantage of the

ambiguity over climate theories through cheap talk. While this claim is normative, one could wonder if the existence
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of a non-certifiable information device such as the IPCC’s confidence nomenclature (Mastrandrea et al., 2010) can

help us to extend it to positive terms. This question is still under investigation and will be left for future research.

Note that my result holds independently of the IPCC knowing what the true theory is. I have only assumed that

she chooses one as being the true through deliberation or consensus. Because of the strategic interaction between

the players, if the countries believe the IPCC to be rational, it is rational from them to respond to her message as

if she knew the true distribution. Ultimately, it all relies on the rationality of the IPCC’s choice over the available

knowledge. One could argue that being herself uncertain over the true theory, she could behave as an MEU decision

maker. This corresponds to a special case of our model where the IPCC’s type is f0. The same can be said for any

decision rule under ambiguity, as long as it selects an element of C as the true distribution over the states of world.

5 Conclusion

This paper aims at understanding the influence the IPCC can have on the outcome of IEA through the use of its

confidence nomenclature. I argue that the IPCC can act as a social planner that mitigates the IEA’s inefficiency

by playing a cheap talk game with the agreement participants. It could be argued that the IPCC’s mission is not

regulatory but only to convey scientific information to the decision makers. The argument made here is that she

could act as such, in a way similar to a central bank that, by its announcements, oversees financial stability. In a

similar spirit to this paper, Stein (1989) shows that through its imprecise communication, the Fed plays a cheap

talk game that helps it to achieve its regulatory goals.

A central assumption for the results of my paper is that countries behave as having MEU preferences in the face

of ambiguity. This assumption is responsible for the refinement of the cheap talk game equilibrium compared to

the standard case of Crawford and Sobel (1982). I have argued that, for many authors, it is an assumption justified

both normatively and positively in the context of climate change. Yet, implicitly, I have assumed that while holding

a set of probability distributions as plausible, the countries would base their actions on the entire set. Nothing

in the MEU axioms forces the countries to hold the entire set C as their belief - only a convex subset is imposed.

An extension of the MEU model provides support to my claim. Hill (2013) suggests that a MEU decision maker

will select the beliefs upon which he grounds his decisions in function of their stakes. The higher the stakes of

the choices he faces, the wider the subset chosen among the plausible probabilities. Would one accept this idea, it
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would seem reasonable to think that while facing the potential extinction of the human species, a decision maker

would rely on the entire set of information he has been provided with.

6 Appendix

Proof of lemma 1:

d̂ is a linear combination of (d(, ω))ω∈Ω, a set of increasing and strictly convex functions. As a consequence d̂ is

increasing and strictly convex as well.

It follows from the strict convexity of d̂ that l∗ is unique and that l → l− d̂(l) is increasing on [0, l∗] and decreasing

on [l∗, 2]

Furthermore, for sj ∈ Sj :

maxsi∈SiEp(ui(si, sj)) = maxl∈[sj ,1+sj ]Ep(uj(l − sj , sj)) = maxl∈[sj ,1+sj ]l − sj − d̂(l)

Thus overall:

argmaxsi∈SiEp(ui(si, sj)) =



0 if l∗ − sj < 0

l∗ − sj if 0 ≤ l∗ − sj < 1

1 if l∗ − sj ≥ 1

and for si > l∗, Ep(ui(si, sj)) < Ep(ui(s
∗
i , sj)), thus si > l∗ is a strictly dominated strategy.

Proof of proposition 2:
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I set i, j ∈ P, i ̸= j and assume player i plays si ≤ l∗: I deduce from Lemma 1 that the best response function

of player j to si is:

BRj(si) =


l∗ − si if l∗ < 1 + si

1 if l∗ ≥ 1 + si

(2)

Furthermore, by symmetry of the game I have that the best response function of player i to ∀sj ∈ Sj is:

BRi(sj) =


l∗ − sj if l∗ < 1 + sj

1 if l∗ ≥ 1 + sj

(3)

Case 1: l∗ ≥ 1 and l∗ − 1 ≥ si.

Then, I deduce from (2) that BRj(si) = 1 and from (3) that BRi(1) = l∗ − 1 and that {(si, 1)|0 ≤ si ≤ l∗ − 1}

isn’t a set of Bayesian Nash equilibrium.

Yet, by using (2) again I have that BRj(l
∗−1) = 1. Thus (l∗−1, 1) is a Bayesian Nash equilibrium. By symmetry

of the game (1, l∗ − 1) is one as well.

Case 2: l∗ ≥ 1 and l∗ − 1 < si < l∗

Then, I deduce from (2) that BRj(si) = l∗ − si. Furthermore, I deduce from (3) that BRi(l
∗ − si) = si. Thus

{(si, l∗−si)|si > l∗−1} is a set of Bayesian Nash equilibrium and by symmetry of the game {(l∗−sj , sj)|sj > l∗−1}

is one as well.

Case 3: l∗ < 1

Then, I deduce from (2) that BRj(si) = l∗−si and I deduce from (3) that BRi(l
∗−si) = si. Thus {(si, l∗−si)|si >
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l∗ − 1} is a set of Bayesian Nash equilibrium and by symmetry of the game {(l∗ − sj , sj)|sj > l∗ − 1} is one as well.

Thus, the set of all possible Bayesian Nash equilibrium is {(s1, s2) ∈ [0, 1]2|s1 + s2 = l∗} and the only symmetric

Bayesian Nash equilibrium is s1 = s2 = l∗

2

Proof of proposition 4:

Assume player i plays s0 ∈ Si.

I deduce from lemma 1 that s0 > l∗i and s0 > l∗j are strictly dominated strategies. Thus, for si ≤ l∗i , the best

response function of player j to si is:

BRj(si) =


l∗j − si if l∗j − si < 1

1 if l∗j − si ≥ 1

(4)

as l∗j − si ≥ 0.

Equally, the best response function of player i to sj ∈ Sj is:

BRi(sj) =



0 if l∗i − sj < 0

l∗i − sj if 0 ≤ l∗i − sj < 1

1 if l∗i − sj ≥ 1

(5)

Then, three possible cases arise:

Case 1: l∗j ≥ 1 and l∗j − 1 > s0

Then, I deduce from (4) that BRj(s0) = 1. Furthermore,
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1. If l∗i < 1, BRi(1) = 0 and then BRj(0) = 1. Thus, (0, 1) is a Bayesian Nash equilibrium.

2. If l∗i ≥ 1, BRi(1) = l∗i − 1 and BRj(l
∗
i − 1) = 1 as l∗i < l∗j . Thus (l∗i − 1, 1) is a Bayesian Nash equilibrium.

Case 2: l∗j ≥ 1 and l∗j − 1 < s0 ≤ l∗i

I deduce again from (4) that BRj(s0) = l∗j − s0 and from (5) that:

BRi(l
∗
j − s0) =



0 if l∗i − l∗j + s0 < 0

l∗i − l∗j + s0 if 0 ≤ l∗i − l∗j + s0 ≤ 1

1 if l∗i − l∗j + s0 > 1

and from (4) again that:

BRj(l
∗
i − l∗j + s0) =


2l∗j − l∗i − s0 if 2l∗j − l∗i − s0 ≤ 1

1 if 2l∗j − l∗i − s0 > 1

I define the following sequence:

Un = (n+ 1)l∗j − nl∗i − s0

I have that:

• BRj(s0) = U0

• ∀n ∈ 2N, Un ∈ [0, 1] ⇒ BRi(Un) = l∗i − Un
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• ∀n ∈ 2N+ 1, l∗i − Un ∈ [0, 1] ⇒ BRj(l
∗
i − Un) = Un+1

Thus, I take attention on the conditions under which (Un)n∈N and (l∗i −Un)n∈N are in [0, 1]. As long as they are

the case no Bayesian Nash equilibrium can arise from the best response algorithm. Yet, once they leave [0, 1] - if

they do- an equilibrium might form.

For n ∈ N, the following cases arise:

BRi(Un) =



0 if l∗i − Un < 0

l∗i − Un if 0 ≤ l∗i − Un ≤ 1

1 if l∗i − Un > 1

Equally,

BRj(l
∗
i − Un) =


Un+1 if 0 ≤ Un+1 ≤ 1

1 if Un+1 > 1

Yet, I have that:

• When can BRi(Un) = 0 ?

l∗i − Un < 0 ⇐⇒ l∗i − [(n+ 1)l∗j − nl∗i − s0] < 0

⇐⇒ s0 < (n+ 1)(l∗j − l∗i )

Yet, l∗j − 1 < s0 ≤ l∗i and l∗j − 1 > (n+ 1)(l∗j − l∗i ) ⇐⇒ n(l∗i − l∗j ) + l∗i < 1 which is always true. Thus there

is no s0 ∈ [l∗j − 1, l∗i ] such that BRi(Un) = 0
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• When can BRi(Un) = 1 ?

l∗i − Un > 1 ⇐⇒ l∗i − [(n+ 1)l∗j − nl∗i − s0] > 1

⇐⇒ s0 > (n+ 1)(l∗j − l∗i ) + 1

As s0 ≤ 1, that l∗j − l∗i > 0 and that l∗j > 1 this inequality is never true. Thus BRi(U2m) = 1 is never possible.

• As a consequence BRi(Un) is always l∗i − Un

Equally, I have that:

• When can BRj(l
∗
i − Un) = 1 ?

Un+1 > 1 ⇐⇒ (n+ 1)l∗j − nl∗i − s0 > 1

⇐⇒ s0 < n(l∗j − l∗i ) + l∗j − 1

Yet, l∗j − 1 < s0 ≤ l∗i , l∗j − 1 > 0 and n(l∗j − l∗i ) ≥ 0 for all n ∈ N. Thus, the above inequality is never true.

As a consequence BRj(l
∗
i − Un) is always Un+1

Yet, limn→+∞Un = l∗j − s0 and limn→+∞l∗i − Un = l∗i − l∗j + s0. Thus, overall there is no Bayesian Nash

equilibrium in this case.

Case 3: l∗j < 1

I deduce again from (4) that BRj(s0) = l∗j − s0.

• As in case 2, BRi(Un) is l∗i − Un as long as s0 ≥ (n + 1)(l∗j − l∗i ). As 0 < s0 ≤ l∗i , this is possible as long as

(n+ 1)(l∗j − l∗i ) < l∗i ⇐⇒ n <
2l∗i −l∗j
l∗j−l∗i

.

Thus, for n ≥ 2l∗i −l∗j
l∗j−l∗i

, BRj(l
∗
i − Un) = 0.
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• Yet, BRj(l
∗
i − Un) = Un+1 as long as s0 > n(l∗j − l∗i ) + l∗j − 1. As 0 < s0 ≤ l∗i , this is possible as long as

n(l∗j − l∗i ) + l∗j − 1 < l∗i ⇐⇒ n <
1−(l∗j−l∗i )

l∗j−l∗i
.

Thus, for n ≥ 1−(l∗j−l∗i )

l∗j−l∗i
, BRj(l

∗
i − Un) = 1.

Yet, 2l∗i −l∗j
l∗j−l∗i

<
1−(l∗j−l∗i )

l∗j−l∗i
, thus the Bayesian Nash equilibrium of the game is (0, l∗j )

Thus, overall, the following agreements are possible:

• (0, 1) when (l∗i , l
∗
j ) ∈ C1 = {(l∗i , l∗j ) ∈ L2|l∗j ≥ 1, l∗i < 1} and the corresponding outcome of the game is 1

• (l∗i − 1, 1) when (l∗i , l
∗
j ) ∈ C2 = {(l∗i , l∗j ) ∈ L2|l∗j ≥ 1, l∗i ≥ 1} and the corresponding outcome of the game is l∗i

• (0, l∗j ) when (l∗i , l
∗
j ) ∈ C3 = {(l∗i , l∗j ) ∈ L2|l∗j ≤ 1} and the corresponding outcome of the game is l∗j

Proof of proposition 5:

Assume any type fθ ∈ Ck sends message mk = [θk, θk+1[.

By construction, G(mk−1) ≤ l(fθk) ≤ G(mk). For all Ck, type fθk has the most incentive to deviate from sending

mk to sending mk−1. Indeed, G is an increasing function, thus, ∀θ ∈ Ck, |l∗(fθk) −
∫
ω∈Ω

fθ(ω)d(l
∗(fθk), ω)dω −

Vθk(m)| ≥ |l∗(fθ)−
∫
ω∈Ω

fθ(ω)d(l
∗(fθ), ω)dω − Vθ(m)|.

Thus, it is a necessary and sufficient condition for all types in Ck to send mk is that Vθk(mk) ≥ Vθk(mk−1).

Furthermore, it is also necessary that all types in Ck−1 prefer message mk−1. In particular it is the case for

type fθk , thus: Vθk(mk) ≤ Vθk(mk−1). As a consequence, a necessary and sufficient condition for (σ, s∗i , s
∗
j ) to be a

sequential equilibrium is for all k ∈ J2, nK :

Vθk(mk) = Vθk(mk−1) (6)

⇐⇒ G(mk)−
∫
ω∈Ω

fθk(ω)d(G(mk), ω)dω = G(mk−1)−
∫
ω∈Ω

fθk(ω)d(G(mk−1), ω)dω
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For mk such that G(mk) ≤ 1, G is strictly increasing. Thus G(mk) ̸= G(mk−1) and as countries are MEU I have

that :

Vθk(mk) = Vθk(mk−1) (7)

⇐⇒
∫
ω∈Ω

fθk(ω)
d(G(mk),ω)−d(G(mk−1),ω)

G(mk)−G(mk−1)
dω = 1

⇐⇒
∫
ω∈Ω

fθk(ω)
d(G(θk),ω)−d(G(θk−1),ω)

G(θk)−G(θk−1)
dω = 1

I have that G(θ1) = l∗i (fθ1) = 0 by assumption, and for k ≥ 2, I deduce G(θk) by induction until θn such that

G(θn) ≤ 1 and G(θn+1) > 1.

Further I define θn+1 and θn+2 such that l∗j (fθn+1) = 1 and l∗i (fθn+2) = 1. When θ ∈ Cn, (7) guarantees that mn

is an equilibrium and when θ ∈ Cn, (6) does.

For mk such that G(mk) ≥ 1, G is strictly increasing and G(mk+1) ̸= G(mk) again. Thus I define yet again

{θn+3, ..., θm−1} by induction through (7) as long as G(θk) ≤ 2. I finally set θm = 1 such that G(θm) = 2.

20



PSE Philippe Colo

References

Budescu, D. V., Broomell, S., and Por, H.-H. (2009). Improving communication of uncertainty in the reports of the

intergovernmental panel on climate change. Psychological science, 20(3):299–308.

Crawford, V. P. and Sobel, J. (1982). Strategic information transmission. Econometrica: Journal of the Econometric

Society, pages 1431–1451.

Eichberger, J. and Kelsey, D. (2002). Strategic complements, substitutes, and ambiguity: the implications for public

goods. Journal of Economic Theory, 106(2):436–466.

Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The quarterly journal of economics, pages 643–669.

Finus, M. and Pintassilgo, P. (2013). The role of uncertainty and learning for the success of international climate

agreements. Journal of Public Economics, 103:29–43.

Gilboa, I. and Marinacci, M. (2016). Ambiguity and the bayesian paradigm. In Readings in Formal Epistemology,

pages 385–439. Springer.

Gilboa, I., Postlewaite, A., and Schmeidler, D. (2009). Is it always rational to satisfy savage’s axioms? Economics

& Philosophy, 25(3):285–296.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal of mathematical

economics, 18(2):141–153.

Hill, B. (2013). Confidence and decision. Games and Economic Behavior, 82:675–692.

Kellner, C. and Le Quement, M. T. (2018). Endogenous ambiguity in cheap talk. Journal of Economic Theory,

173:1–17.

Klibanoff, P., Marinacci, M., and Mukerji, S. (2005). A smooth model of decision making under ambiguity. Econo-

metrica, 73(6):1849–1892.

Lange, A. and Treich, N. (2008). Uncertainty, learning and ambiguity in economic models on climate policy: some

classical results and new directions. Climatic Change, 89(1-2):7–21.

Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., Held, H., Kriegler, E.,

Mach, K. J., Matschoss, P. R., et al. (2010). Guidance note for lead authors of the ipcc fifth assessment report

on consistent treatment of uncertainties.

21



PSE Philippe Colo

Millner, A., Dietz, S., and Heal, G. (2013). Scientific ambiguity and climate policy. Environmental and Resource

Economics, pages 1–26.

Mongin, P. (1995). Consistent bayesian aggregation. Journal of Economic Theory, 66(2):313–351.

Na, S.-l. and Shin, H. S. (1998). International environmental agreements under uncertainty. Oxford Economic

Papers, 50(2):173–185.

Olson, M. (1965). Logic of Collective Action: Public Goods and the Theory of Groups (Harvard economic studies.

v. 124). Harvard University Press.

Pindyck, R. S. (2007). Uncertainty in environmental economics. Review of environmental economics and policy,

1(1):45–65.

Risbey, J. S. and Kandlikar, M. (2007). Expressions of likelihood and confidence in the ipcc uncertainty assessment

process. Climatic change, 85(1-2):19–31.

Stein, J. C. (1989). Cheap talk and the fed: A theory of imprecise policy announcements. The American Economic

Review, pages 32–42.

Tol, R. S. (2011). Regulating knowledge monopolies: the case of the ipcc. Climatic Change, 108(4):827.

Warr, P. G. (1983). The private provision of a public good is independent of the distribution of income. Economics

letters, 13(2-3):207–211.

22


