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1 Introduction

In the short/medium term, renewables cannot be deployed at a large scale to replace coal

and other fossil fuels in electricity generation. Indeed, they are on the one hand on average

still more costly than fossil fuels, and on the other hand both variable, which is predictable

(night and day, seasons), and intermittent, which is not (cloud cover, etc.). But in the future

the production of electricity has to be decarbonized, and producing energy by renewable

means seems to be the only possibility to do so1, before nuclear fusion becomes eventually

available.

The literature considering the penetration of renewables in the energy mix consists so far

in two separate trends.

On the one hand, macro-dynamic models à la Hotelling consider renewable energy as an

abundant and steady flow available with certainty, possibly after an investment in capacity

has been made, at a higher unit cost than fossil energy2. The issue is the cost –otherwise

clean renewable energy would replace polluting fossil fuels immediately. Thus standard

models of energy transition ignore variability and intermittency and focus on the cost issue.

However, the expansion of renewables will probably not be limited by the direct costs of

electricity generation in the (near) future. Costs have already been widely reduced, due

to technical progress and learning effects in production and installation, and the decrease

is expected to continue, until a limit lower bound of the cost is reached. For instance,

according to the International Energy Agency (2011), solar PV costs have been reduced

by 20% for each doubling of the cumulative installed capacity. The Energy Information

1Carbon Capture and Storage (CCS) is another option, but it is still expensive and can only offer a
partial solution as potential carbon sinks are of limited capacity. CCS has already been extensively studied.
See for instance Lafforgue, Magne and Moreaux (2008).

2See, for early path-breaking papers, Hoel and Kverndokk (1996), and Tahvonen (1997).
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Administration reports that the US average levelized cost of electricity in 2012 is $/MWh

95.6 for conventional coal, 66.3 for natural gas-fired combined cycle, 80.3 for terrestrial

wind, 204.1 for offshore wind, 130 for solar PV, 243 for solar thermal and 84.5 for hydro.

Terrestrial wind and hydro (that we do not consider here because the expansion possibilities

are very limited in developed countries) are already competitive, and solar PV is rapidly

catching up in the US. In sunny and dry countries it is even more so: solar PV has already

obtained grid parity3 in sunny islands, and is expected to reach grid parity very soon for

instance in Italy or California. Hence the real obstacle to a non-marginal expansion of

renewables is not their cost but their variability, their intermittency, and maybe also their

footprint in terms of land use – especially for wind energy.

Another strand of literature is composed of static models that are not directly interested in

energy transition, but focus on the design of the electric mix (fossil fuels and renewables)

when intermittency is taken into account, with or without storage devices. Ambec and

Crampes (2012, 2015) are representative of this literature. They study the optimal elec-

tric mix with intermittent renewable sources, and contrast it to the mix chosen by agents

in a decentralized economy where the retailing price of electricity does not vary with its

availability. They examine the properties of different public policies and their impacts on

renewable penetration in the electric mix: carbon tax, feed-in tariffs, renewable portfolio

standards, demand-side management policies.

A recent survey on the economics of solar electricity (Baker et al., 2013) emphasizes the lack

of economic analysis of a decentralized clean energy provision through renewable sources.

We intend to contribute to fill this lack by putting together the two strands of the literature

mentioned above, in order to make macro-dynamic models more relevant for the study of

the energy transition. Indeed we believe that the energy transition is by essence a dynamic

problem, which cannot be fully understood through static models. On the other hand,

dynamic models are so far unable to take into account properly some crucial features of

renewables. We plan to extend to a dynamic setting the static models cited above, taking

into account variability and intermittency, in order to study to what extent they actually

constitute a serious obstacle to energy transition.

In a first step we tackle the variability issue alone. We build a stylized deterministic dynamic

model of the optimal choice of the electric mix (fossil and renewable), where the fossil

energy, let us say coal for the purpose of illustration, is abundant but CO2-emitting, and

the renewable energy, let us say solar, is variable but clean. The originality of the model is

that electricity produced when the renewable source of energy is available, and electricity

produced when it is not, are considered two different goods: day-electricity and night-

electricity in the case of solar energy. At each period of time, consumers derive utility from

the consumption of the two goods. Considering that there are two different goods allows

3Grid-parity is reached when the cost of electricity generation with the renewable source is roughly equal
to the retailing electricity price.
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taking into account intra-day variability. Day-electricity can be produced with coal and/or

solar. Night-electricity can be produced with coal, or by the release of day-electricity that

has been stored to that effect. Storing energy is costly due to the loss of energy during the

restoration process. We consider that coal and solar are available at zero variable costs, in

order to focus on the variability and intermittency issues. We also make the assumption

that at the beginning of the planning horizon coal-fired power plants already exist so that

there is no capacity constraint on the production of electricity by the fossil source, but that

the existing solar capacity is small so that investments are to be made in order to build up

a sizable capacity.

We solve the centralized program under the constraint of a carbon budget that cannot be

exceeded, and derive an optimal succession of regimes. We show that with a low initial solar

capacity it is optimal to first use fossil fuels during night and day, then use fossil fuels during

night only and finally go for no fossil fuels at all, when the carbon budget is exhausted. The

optimal dynamics for the capacity of solar power plants is derived, as well as the optimal

amount of electricity stored in time. We show that storage begins when fossil fuels have been

abandoned at day and the solar capacity is large enough. Simulations allow us to analyze the

consequences of improvements in the storage and solar power generation technologies and

of a more stringent environmental policy on the optimal investment decisions and energy

mix.

In a second step, we introduce intermittency4 in the model and study the design of the

power system enabling to accommodate it. With intermittency, day-electricity generation

by solar power plants becomes uncertain. We consider that there is only partial generation

if solar radiations are too weak due for instance to the cloud system, which occurs with a

given probability. We exhibit two very different situations. If the cloud problem is not too

severe, we show that intermittency does not matter so much, rejoining there the empirical

result of Gowrisankaran et al. (2016). The energy transition follows the same succession of

phases as under variability only, and intermittency only makes things a little bit worse. On

the contrary, if there may be very few sun during the day, the transition is very different as

fossil fuels are abandoned later while storage starts earlier. In this case, intermittency leads

to a very significant welfare loss.

The structure of the paper is the following. Section 2 sets up the framework, solves the

model and studies the sensitivity of the solution to the main parameters in the case where

variability only is taken into account. Section 3 introduces intermittency. We compute in

Section 4 the value of storage. Section 5 concludes.

4This means that clean energy is not only variable but intermittent as well.
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2 Variability in renewable electricity generation

One of the novelties of the paper is that day and night electricity are modeled as two

different goods that the representative household wants to consume at each point in time.

Energy requirements may be satisfied by fossil sources, let’s say coal, at day and night.

Coal is abundant and carbon-emitting: the issue with coal extraction and consumption

is not scarcity but climate change. There are no extraction costs. Climate policy takes

the form of a carbon budget that society decides not to exceed, to have a good chance to

maintain the temperature increase at an acceptable level -typically 2◦C. This carbon budget

is consumed when coal is burned. It is also possible to use a renewable source of energy,

abundant but clean, provided that a production capacity is built. This energy is variable

i.e. changes in a predictable way. We consider for the purpose of illustration that it is solar

energy, that can be harnessed at day but not at night. Costly investment allows to increase

solar capacity. There exists a storage technology that allows to store imperfectly electricity

from day to night at no monetary cost but with a physical loss.

Our objective is to determine the optimal electric mix, the path of investment in renewable

capacity and the optimal storage policy.

2.1 The optimal solution

The social planner seeks to maximize the discounted sum of the net surplus of the economy.

Instantaneous net surplus is the difference between the utility of consuming day and night-

electricity and the cost of the investment in solar capacity.5 Day-electricity can be produced

by coal-fired power plants and/or solar plants. A fraction of solar electricity can be stored

to be released at night.6 In addition to fossil electricity, night-electricity can be produced

by the release of solar electricity stored during the day, with a loss.7

5For simplicity and to focus on the variability issue, we ignore the extraction cost of coal and the variable
cost of using solar panels. We suppose that a large fossil capacity exists at the beginning of the planning
horizon but that the initial solar capacity is low.

6It does not make sense to store coal electricity since coal-fired power plants can be operated at night as
well and there is no capacity constraint.

7For instance, according to Yang (2016), the efficiency of pumped hydroelectric storage (defined as the
electricity generated divided by the electricity used to pump water) is lower than 60% for old systems, but
over 80% for state-of-the-art ones.
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The social planner’s programme reads:

max

∫ ∞
0

e−ρt [u (ed(t), en(t))− C(I(t))] dt (1)

ed(t) = xd(t) + (1− a(t))φY (t)

en(t) = xn(t) + ka(t)φY (t)

Ẋ(t) = xd(t) + xn(t)

Ẏ (t) = I(t)

0 ≤ a(t) ≤ 1

X(t) ≤ X

xd(t) ≥ 0, xn(t) ≥ 0

X0 ≥ 0, Y0 ≥ 0 given

where u is the instantaneous utility function, supposed to have the standard properties, ed
and en are respectively day and night-electricity consumption, xd and xn are fossil-generated

electricity consumed respectively at day and night, X is the stock of carbon accumulated

into the atmosphere due to fossil fuel combustion, X is the carbon budget i.e. the ceiling

on the atmospheric carbon concentration, Y is solar capacity, φ measures the efficiency of

solar electricity generation, I is the investment in solar capacity, C(I) is the investment cost

function, a is the share of solar electricity produced at day that is stored to be released at

night. The efficiency of the storage technology is represented by the parameter k ∈ [0, 1]

(1− k is the leakage rate of this technology). ρ is the discount rate.

We make the following assumptions on the utility and investment cost functions: utility is

logarithmic and investment cost is quadratic (because of adjustment costs):

u (ed, en) = α ln ed + (1− α) ln en, 0 < α < 1 (2)

C(I) = c1I +
c2
2
I2, c1, c2 > 0 (3)

With these assumptions we are able to solve the problem analytically. We obtain the

following results.

Proposition 1 In the case where only variability of renewable energy is taken into account

and the initial solar capacity is low, the optimal solution consists in 4 phases:

(1) production of day and night-electricity with fossil fuel-fired power plants complemented

at day by solar plants, no storage, investment in solar panels to increase solar capacity (from

0 to T );

(2) production of day-electricity with solar plants only, use of fossil fuel-fired power plants

at night while proceeding with the building up of solar capacity, no storage (from T to Ti);
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(3) production of day-electricity with solar plants only, use of fossil fuel-fired power plants at

night while proceeding with the building up of solar capacity, progressive increase of storage

from 0 to its maximal value, which depends on preferences for day and night-electricity (from

Ti to T );

(4) production of day and night-electricity with solar plants only, storage at its maximum

value at day to produce night-electricity, and investment in solar panels to increase capacity,

up to a steady state (from T to ∞). This last phase begins when the carbon budget is

exhausted.

Proof. See Appendix A.

Proposition 1 shows that it is always optimal to begin installing solar panels immediately

and to use them to complement fossil energy at daytime. However, it is never optimal to

begin storing immediately. Storage would allow saving fossil energy at night, but at the

expense of more fossil at day to compensate for the solar electricity stored; it would also

cause a physical loss of electricity. Even if the storage technology is available, as it is the

case in the model, storage must only begin after fossil has been abandoned at day because

the installed solar capacity has become high enough. Full storage coincides with the final

abandonment of fossil.

We show analytically in Appendix A that the four phases identified in Proposition 1 are

characterized by the following equations.

• Evolution of the shadow value λ of the atmospheric carbon stock (the carbon value)

before the carbon budget is exhausted:

λ(t) = λ(0)eρt (4)

• Evolution of solar capacity over the whole horizon:

Ẏ (t) =
1

c2
(µ(t)− c1) (5)

where µ is the shadow value of solar capacity.

• Evolution of the value of solar capacity in each phase:

Phase (1) µ̇(t) = ρµ(t)− φλ(t)

Phase (2) µ̇(t) = ρµ(t)− α

Y (t)

Phase (3) µ̇(t) = ρµ(t)− kφλ(t) (6)

Phase (4) µ̇(t) = ρµ(t)− 1

Y (t)
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• Fossil fuel use, storage and total electricity consumption in each phase:

Phase (1) xd(t) =
α

λ(t)
− φY (t) xn(t) =

1− α
λ(t)

a(t) = 0

ed(t) =
α

λ(t)
en(t) =

1− α
λ(t)

Phase (2) xd(t) = 0 xn(t) =
1− α
λ(t)

a(t) = 0 (7)

ed(t) = φY (t) en(t) =
1− α
λ(t)

Phase (3) xd(t) = 0 xn(t) =
1

λ(t)
− kφY (t) a(t) = 1− α

kλ(t)φY (t)

ed(t) =
α

kλ(t)
en(t) =

1− α
λ(t)

Phase (4) xd(t) = 0 xn(t) = 0 a∗ = 1− α
ed(t) = φαY (t) en(t) = (1− α)kφY (t)

The carbon value follows the Hotelling rule (Eq. (4)).

The joint paths of solar capacity Y and its shadow value µ are determined by the four

dynamic systems composed of Eq. (5) and each of the equations in system (6). They are

represented on the phase diagram of Figure 1, constructed for a given λ(0) that reflects the

stringency of the climate constraint. The last phase is a saddle path leading to a steady state

µ∗ = c1 , Y ∗ = 1/(ρc1). Moving backward from the steady state along the stable branch,

date T is reached. The relevant path then corresponds to phase (3) where the dynamics of

Y and µ are independent, until date Ti is reached. From Ti on, the saddle path of phase

(2), corresponding to the steady state µ∗ = c1 , Y ∗∗ = α/(ρc1) is followed until date T (the

steady state is never reached).8 After T the path followed corresponds to phase (1) where

Y and µ are independent, until date 0. The initial shadow value of solar panels, µ(0) then

obtained (as a function of λ(0)) matches the initial condition Y (0) = Y0.

For a given value of λ(0), the joint evolutions of λ and Y trigger the phase switchings, i.e.

give dates T , Ti and T (see Figure 2 and Eqs. (4) and (5)).

The climate constraint then pins down λ(0).

In phase (1), ed(t) = α/λ(t) and en(t) = (1 − α)/λ(t): electricity consumptions are only

driven by the carbon value, i.e. by climate policy. In phase (2) (when there is no storage),

it is still the case for night electricity consumption, but during daytime, electricity only

depends on installed solar capacity.9 In phase (3) storage occurs and no fossil is used

8Phase (2) does not exist if there is no loss in the storage technology (k = 1).
9It implies that there is overcapacity of fossil generation during daytime.
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during daytime; but due to storage (driven by the climate constraint), it is again only

the climate constraint that determines electricity consumption at each period. In phase

(4), when electricity production is totally carbon-free, electricity consumption at night and

day only depends on installed solar capacity. The amount of electricity stored at day to

be consumed at night only depends on the preference for night-electricity: a∗ = 1 − α. If

α > 1/2, consumers prefer consuming at day, when there is sun. This means that peak

time consumption coincides with the availability of solar electricity. It is obviously the most

favorable case. If on the contrary α < 1/2, sun is shining at off-peak time. This would

correspond to the case that gives rise to the Californian duck documented by CAISO10 and

recently analyzed by Fowlie11 and Wolfram:12 in California, there has been more and more

solar generation during day in the recent years, while consumption is mainly in the evening,

meaning that sun shines off-peak. These dynamics generate a daily net generation (i.e.

electricity generation net of electricity consumption) profile that evolves to look like a duck.

10What the duck curve tells us about managing a green grid, https://www.caiso.com/Documents/

FlexibleResourcesHelpRenewables\_FastFacts.pdf
11See ”The duck has landed”, the Energy Institute Blog, https://energyathaas.wordpress.com/2016/

05/02/the-duck-has-landed/
12See ”What’s the Point of an Electricity Storage Mandate?” https://energyathaas.wordpress.com/

2013/07/29/whats-the-point-of-an-electricity-storage-mandate/
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Figure 2: Solar capacity and carbon value before the ceiling

2.2 Numerical illustrations

We now perform some comparative dynamics exercises, to assess the impact of the stringency

of climate policy and of the value of the parameters on the level and the time profile

of electricity consumption, storage and solar capacity. The parameters of the reference

simulation are given in Table 1. They are chosen for illustrative purposes only, without any

pretension of realism.

ρ k α φ c1 c2 Y0 X0 X
0.04 0.6 0.8 0.76 1 20 0 0 50

Table 1: Parameters in the reference simulation, variability only

In the reference simulation, day-electricity consumption is W-shaped (V-shaped if k =

1). It is first decreasing because of the rise of the carbon value (phase (1)); it is then

increasing as fossil fuel is abandoned at day and more solar panels are installed (phase

(2)); next, storage begins and increases, at the expense of day-electricity consumption,

which decreases (phase (3)); finally, the increasing use of solar panels joint with a constant

share of day-electricity stored generates a rise in day-electricity consumption (phase (4)).

Night-electricity consumption is V-shaped. Indeed, when fossil energy is used at night,
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night-electricity consumption is driven by the carbon value i.e. by climate policy, hence it is

decreasing (phases (1)-(3)); then, when fossil fuel is abandoned at night, night consumption

increases with the stock of solar panels and the development of storage.

The results of the comparative statics exercises are represented on Figures 3 to 6.

• Less stringent climate policy (Figure 3):

In the short run energy consumption at day and night are higher than in the reference

case, storage occurs later, the switch to clean energy is postponed. Investment in

solar panels is lower,13, therefore solar capacity is smaller at each date. This explain

why energy consumption becomes lower than in the reference case in the medium run:

there is an hysteresis effect. Even in the absence of explicit damages due to climate

change, a lenient climate policy has adverse effects in the medium run because it delays

investment in clean energy.

• Less efficient storage technology (Figure 4):

A less efficient storage technology translates in the model in a higher loss rate 1− k.

Then, the date at which storage begins is postponed, which allows to consume more

at day in phase (2). Of course night-electricity consumption is smaller. Again an hys-

teresis effect appears: consumption is lower in the long run, because the development

of solar panels has been slower (except at the very beginning of the planning horizon,

because storage and therefore electricity loss occur later).

• Off-peak sun (Figure 5):

In the reference simulation, consumers prefer to consume electricity when the sun is

shining and solar panels can harness its radiation, i.e. there is sun at peak time.

We make in this simulation the opposite assumption: consumers prefer to consume

electricity when there is no sun (it corresponds to the Californian duck case). Clearly,

the situation is now less favorable. At each date, total electricity consumption (over

day and night) is reduced. The date at which fossil is not used at day anymore

is brought forward so that fossil consumption at night may be higher, and storage

occurs earlier. The long run level of storage has to be higher, which means more

overall electricity loss. Solar panel accumulation is delayed. It is particularly salient

when storage has not started (this explains why the solar capacity in % diff curve is

non monotonous).

• Less efficient solar electricity generation (Figure 6):

At any time, energy consumption at day and night are both lower. Investment in solar

panels is lower and storage is delayed, which postpones the switch to clean energy. This

13See the panel ”solar capacity” on Figure 3 which represents the difference in percentage between solar
capacity in the simulation and in the reference case.
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result stresses the importance of R&D and scale effects in solar electricity generation

for the energy transition.
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Figure 3: Effect of a less stringent climate policy under variability only (X = 50 in blue
and X = 100 in red)
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Figure 4: Effect of a less efficient storage technology under variability only (k = 0.6 in blue
and k = 0.2 in red)

12



10 20 30 40 50
t

1

2

3

4

ed(t),en(t)

20 40 60 80 100 120 140
t

-10

-8

-6

-4

-2

%diff Y(t)

10 20 30 40 50
t

0.2

0.4

0.6

0.8

a(t)

Energy consumption Solar capacity Storage

day (plain) and night (dashed) (% diff.)

Figure 5: Effect of a smaller preference in day electricity under variability only (α = 0.8 in
blue and α = 0.2 in red)
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Figure 6: Effect of less efficient solar electricity generation under variability only (φ = 0.76
in blue and φ = 0.52 in red)
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3 Intermittency in renewable electricity generation

We now account for the fact that renewable electricity generation is not only variable but

intermittent as well, i.e. some of its variations are not predictable. For the purpose of

illustration, we again consider the example of solar energy. Solar radiations can be fully

harnessed during the day if there is sun, but can only be partially harnessed during the day

if there are clouds. No harnessing can happen during the night.

3.1 The optimal solution

During the day, the weather is sunny with a probability q and solar panels are then producing

electricity at full capacity Y . With a probability (1−q) the weather is cloudy and solar panel

only produce φY electricity with 0 < φ < 1.14 As before, there exists a storage technology

that allows to store imperfectly electricity from day to night at no monetary cost but with

a physical loss. With intermittency, the sequences of storage, solar panel accumulation and

electricity consumptions are decided at the beginning of the program, accounting for the fact

that weather will be uncertain. eu denotes electricity consumption when the sun is shining,

while it is noted el when there are clouds. The social planner’s programme becomes:

max

∫ ∞
0

e−ρt
[
qu (eud(t), e

u
n(t)) + (1− q)u

(
eld(t), e

l
n(t)

)
− C(I(t))

]
dt (8)

eud(t) = xd(t) + (1− a(t))Y (t), eld(t) = xd(t) + (1− a(t))φY (t)

eun(t) = xn(t) + ka(t)Y (t), eln(t) = xn(t) + ka(t)φY (t)

Ẋ(t) = xd(t) + xn(t)

Ẏ (t) = I(t)

0 ≤ a(t) ≤ 1

E(X(t)) ≤ X

xd(t) ≥ 0, xn ≥ 0,

X0 ≥ 0, Y0 ≥ 0 given

The characteristics of the optimal solution are described in Proposition 2.

Proposition 2 When the intermittency of renewable energy is taken into account and the

initial solar capacity is low, there exist two different types of optimal solution:

14To ensure that comparisons can be made between this model and the one with variability only, we
impose in the simulations φ = q+ (1− q)φ : the efficiency of solar panel in the variability only case is equal
to their expected efficiency in the case where intermittency is taken into account.
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(1) For φ > φ̃ defined below, the optimal solution under intermittency and variability exhibits

the same succession of phases as under variability only;

(2) For φ < φ̃, the optimal solution under intermittency and variability significantly differs

from the one under variability only: storage optimally begins before fossil has been abandoned

at day and solar panels accumulate more slowly.

The threshold φ̃ is the real positive and smaller than 1 root of the following second degree

equation:

φ2 +
k (q2 + (1− q)2)− 1

kq(1− q)
φ+ 1 = 0 (9)

It is an increasing function of k, which implies that the more efficient the storage technology

is the smaller is the range of φs for which intermittency may be safely ignored.

Proof. See Appendix B.

Intuition runs as follows. There are two different methods to make sure that night-electricity

demand is satisfied under a climate constraint that prevents to use as much fossil as neces-

sary. The first one is to abandon fossil at day to ”save” fossil for night when solar capacity

is high enough to ensure that day-electricity needs are satisfied. The second one is stor-

age, which allows to transfer electricity from day to night, at the expense of a loss. With

variability only, and with intermittency characterized by a small cloud problem (φ is high,

corresponding to case (1) in Proposition 2), it is optimal to use the first method first, that

is to begin storage after fossil has been abandoned at day, to avoid incurring the loss. With

intermittency characterized by a severe cloud problem (φ is low, corresponding to case (2)

in Proposition 2), the second method is used first, in spite of the loss. Fossil is abandoned

at day later, to make sure that, in the case of no or few sun, day-electricity consumption

can be satisfied. To compensate for the smaller quantity of fossil left available for night, a

part of day-electricity production by solar panels is stored.

3.2 Numerical illustrations

These simulations are for illustrative purpose only. Parameters are the same as in the

variability only case (see Table 1), except for φ. The discount rate is ρ = 4%, and the loss

rate of the storage technology is 1−k = 0.4. Solar is shining at peak time: α = 0.8 > 1/2. As

for the new parameters characterizing intermittency, we consider that the probability that

there are no clouds at daytime is q = 0.7, and the parameter representing the magnitude

of the cloud problem φ is chosen to illustrate the two situations identified in the resolution

(see Proposition 2):

• In Case I, where the cloud problem is moderate, we choose φ = 0.5 > φ̃ = 0.201. Then

φ = q + (1− q)φ = 0.85.
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• In Case II, where the cloud problems severe, we consider the extreme case where

there may be no solar generation at all during daytime φ = 0 < φ̃ = 0.201. Then

φ = q + (1− q)φ = 0.7.

Results drastically differ depending on the case.

3.2.1 Case I: Moderate cloud problem

It is very striking there are only very small differences in the numerical simulations of case

I and variability only (see Figure 7). For instance, day-electricity consumption follows a

path very close to a W shape as exhibited under variability only. In addition, intermittency

reduces welfare by only 4.5%. This is consistent with the empirical findings in Gowrisankaran

and Reynolds (2016). In the latter paper, the social costs of different levels of large scale

renewable energy capacity are estimated on southeastern Arizona data. Not accounting for

offset CO2, the social costs for 20% solar generation are $138.4/MWh, of which variability

and intermittency accounts for $46 and intermittency alone for $6.1.

Less surprisingly, the general result is that intermittency globally makes matters slightly

worse (see Figure 7). Electricity consumption is always smaller with intermittency than

under variability only. The full storage capacity and the no-fossil economy are reached

later. Night-electricity consumption begins to increase later.
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Figure 7: Dynamics of variables of interest under intermittency in Case I (red) and variability
only (blue)
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3.2.2 Case II: Severe cloud problem

A risk of bad solar generation during day completely changes the story and the differences

are significant between Case II and both case I and the case with variability only (see Ap-

pendix C and Figure 8). Energy consumption is significantly lower under case II than under

variability only. There is less fossil fuel use at the beginning to save some for later times and

be able to face days with no solar generation. As a result, the carbon budget is consumed

more slowly. The transition to clean energy never actually occurs: fossil fuel consumption

tends towards zero asymptotically but is never totally abandoned, to compensate a total

absence of sun. As expected, storage starts earlier in case II than in the other cases, to deal

with the smaller use of fossil at night. It converges to the steady-state level asymptotically.

The solar panel capacity is always smaller in case II, in the short/medium run and at the

steady state as well, where it is equal to Ỹ = q/(ρc1). Finally, intermittency reduces welfare

by 92, 6% which 20 times more than in case I.

We can therefore deduce that intermittency only matters if the bad realization of the solar

generation is bad enough (i.e. φ is low enough). In our numerical illustration, a bad

realization corresponding to dividing by half (φ = 0.5) the solar generation is not enough

to trigger a significant effect of intermittency. With our calibration, intermittency starts

playing a non-negligible role when φ ≤ 0.201.
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Figure 8: Dynamics of variables of interest under intermittency in Case II (red) and vari-
ability only (blue)

Another interpretation is that intermittency is likely to be negligible compared to variability

in those countries in the world where the sunshine is guaranteed. The map in Figure 9
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gives an idea of the countries where intermittency should be accounted for in addition to

variability. There also exist indices of cloudiness that rank cities over the world. Finally,

the World Meteorological Organization provides a map for cloudiness and rain (see Figure

10) suggesting that in France intermittency should be accounted for while it does not really

matter in North-Africa.

	

Figure 9: Photovoltaic Electricity Potential. Source: The World Bank 2017, Solar resource
data: Solargis

4 The value of storage

As storage is suspected to play a major role in tackling variability and intermittency, we

appraise its importance by comparing the model with variability only and storage analyzed

above with a model with variability only and no storage possibilities. It will allow us to

determine he value of storage, in terms of the welfare gain its availability brings.

In the case with variability only and no storage, the social planner program reads:
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Figure 10: Global observations- Cloudiness and Rain
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max

∫ ∞
0

e−ρt [u (ed(t), en(t))− C(I(t))] dt

ed(t) = xd(t) + φY (t)

en(t) = xn(t)

Ẋ(t) = xd(t) + xn(t)

Ẏ (t) = I(t)

X(t) ≤ X

xd(t) ≥ 0, xn(t) ≥ 0

X0 ≥ 0, Y0 ≥ 0 given

Only two phases appear. In Phase (1), fossil fuels are used night and day, whereas they

are used only during night in Phase (2). During these two phases, the carbon value λ still

follows the Hotelling rule. The dynamic equation driving solar capacity accumulation over

the whole horizon is the same as in the general model as well. The evolution of the value of

solar capacity in each phase is:

Phase (1) µ̇(t) = ρµ(t)− φλ(t)

Phase (2) µ̇(t) = ρµ(t)− α

Y (t)

Fossil fuels use and total electricity consumption in each phase are:

Phase (1) xd(t) =
α

λ(t)
− φY (t) xn(t) =

1− α
λ(t)

ed(t) =
α

λ(t)
en(t) =

1− α
λ(t)

Phase (2) xd(t) = 0 xn(t) =
1− α
λ(t)

ed(t) = φY (t) en(t) =
1− α
λ(t)

Numerical simulations are performed for φ = 0.5. The dynamics for fossil fuels use and

electricity consumption are shown in Figure 11. Phase (2) is a saddle path leading to a

steady state µ∗ = c1 , Y ∗∗ = α/(ρc1). Along this path, daytime electricity consumption

is determined by solar capacity, but night electricity consumption still uses coal as there
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exists no mean to transfer daytime solar generation towards the night. Therefore electricity

generation is never carbon-free and night consumption (that is equal to fossil fuels use)

asymptotically tends toward zero as it is driven by the climate constraint. It implies overca-

pacity of fossil generation during day, as in the general model (but opposite to what happens

if variability is ignored). Moving backward from the steady state along the stable branch, a

date is reached when there is a switch to Phase (1). In this phase, the dynamics of Y and µ

are independent; electricity consumptions night and day use fossil fuels and are determined

by climate policy.15

Comparisons between the two models are provided in Figure 11. Thanks to storage, it

is possible to transfer electricity generated at day using solar capacity towards the night.

Benefits from solar generation are therefore higher with storage, which explains that solar

capacity at the steady state is higher with storage (Y ∗ = 1/(ρc1) compared to Y ∗∗ = α/(ρc1)

without storage). Finally, the value of storage can be appraised by computing the welfare

in the two models: we obtain that introducing a storage technology increases welfare by

16.4%.
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Figure 11: The role of storage (variability and storage in blue, variability and no storage in
green)

5 Conclusion

In this paper, we build a stylized dynamic model of the optimal choice of the electric mix,

where the fossil energy, coal, is abundant but CO2-emitting, and the renewable energy,

solar, is variable and intermittent but clean. We solve the centralized program under the

constraint of a carbon budget that cannot be exceeded and derive an optimal succession of

regimes. The optimal dynamics for the capacity of solar power plants is derived, as well

as the optimal amount of electricity stored in time. Simulations allow us to show that a

15As in the previous models, the initial value of solar panels, µ(0) then provided matches the initial
condition Y0. For a given value of λ(0) the joint evolutions of λ and Y trigger the phase switchings and the
climate constraint then pins down λ(0).
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lenient climate policy delays both storage and the switch to clean energy, as does a higher

probability of bad weather. Off-peak sun, rather than peak sun, increases storage and

hinders consumption. We also obtain that, compared with variability only, intermittency

worsens the situation although not so significantly when the cloud problem is moderate, but

changes drastically the optimal solution when it is severe.

This work can be considered as a first step in the study of energy transition under vari-

ability and intermittency of the clean sources. Next steps should concern the account of an

endogenous capacity for fossil fuel generation. In addition, a decentralized version of the

model would be interesting and challenging as the energy market exhibits several peculiar

features, and it would allow designing policy instruments. Finally, R&D investments im-

proving storage technologies, and learning effects allowing a decrease in the cost of solar

energy may also be considered.
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A Variability only

The current value Hamiltonian associated to the social planner’s programme (1) reads,

dropping the time index:

H = u
(
xd + (1− a)φY, xn + kaφY

)
− C(I)− λ (xd + xn) + µI

and the Lagrangian is:

L = H + ωaa+ ωa(1− a) + ωdxd + ωnxn + ωX
(
X −X

)
The first order conditions are:

u1 = λ− ωd (10)

u2 = λ− ωn (11)

Y (u1 − ku2) = ωa − ωa (12)

C ′(I) = µ (13)

−ωX = λ̇− ρλ (14)

−(1− a)φu1 − kaφu2 = µ̇− ρµ (15)

and the complementarity slackness conditions read:

ωaa = 0, ωa ≥ 0, a ≥ 0

ωa(1− a) = 0, ωa ≥ 0, 1− a ≥ 0

ωdxd = 0, ωd ≥ 0, xd ≥ 0

ωnxn = 0, ωn ≥ 0, xn ≥ 0

ωX
(
X −X

)
= 0, ωX ≥ 0, X −X ≥ 0

Before the ceiling, X < X and ωX = 0. Then FOC (14) reads λ̇/λ = ρ, i.e.:

λ(t) = λ(0)eρt (16)

The shadow price of carbon concentration (the carbon value) follows a Hotelling rule before

the ceiling, as long as fossil fuel is used.

Moreover, Eq. (13) reads: c1 + c2I = µ, which, together with Ẏ = I, yields:

Ẏ =
1

c2
(µ− c1) (17)
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A.1 Fossil night and day

This phase is necessarily the first one, if it exists. We denote by T the date at which it ends.

We have xd > 0, xn > 0, ωd = 0, ωn = 0. The FOC read:

α

xd + (1− a)φY
= λ (18)

1− α
xn + kaφY

= λ (19)

(1− k)λφY = ωa − ωa (20)

− ((1− a) + ka)φλ = µ̇− ρµ (21)

to which we add Eqs. (16) and (17).

The left-hand side member of (20) is necessarily positive. Hence the case ωa = 0 and ωa > 0,

i.e. a = 1 (full storage) is excluded. The interior case ωa = 0 and ωa = 0, i.e. 0 < a < 1,

is possible iff Y = 0, which means that no intermittent source of energy is used. But it

does not make sense to have a positive capacity of storage absent any intermittent source

of energy. This case is also excluded. The only possibility is thus ωa > 0 and ωa = 0, i.e.

a = 0 : no storage.

With no storage, Eq. (21) simplifies into:

µ̇− ρµ = −φλ (22)

Using Eq. (16), this equation can be integrated, to obtain µ(t) as a function of µ(0), λ(0)

and time. It allows us to obtain Y (t) as a function of the same variables by integration of

Eq. (17). We suppose that Y0 is low enough, s.t. I(0) > 0, which requires µ(0) > c1.

Eqs. (18) and (19) with a = 0 allow to compute xd and xn:

xd =
α

λ
− φY (23)

xn =
1− α
λ

(24)

At the end of this phase, xd(T ) = 0 (xn(T ) = 0 is impossible, since it would require

λ(T ) = +∞). Hence:

λ(T ) =
α

Y (T )
(25)

Day and night electricity consumption are given by:

ed =
α

λ
, en =

1− α
λ

(26)
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A.2 Fossil at night only

This or these phases are intermediate. We have here xd = 0, xn > 0, ωd > 0, ωn = 0 and

the FOC read:

α

(1− a)φY
= λ− ωd (27)

1− α
xn + kaφY

= λ (28)

α

1− a
− kλφY = ωa − ωa (29)

−α
Y
− kaφλ = µ̇− ρµ (30)

to which we add Eqs. (16) and (17).

A.2.1 No storage

In the case of no storage, the FOC become:

α

φY
= λ− ωd (31)

1− α
xn

= λ (32)

α− kλφY = ωa (33)

−α
Y

= µ̇− ρµ (34)

Eqs. (17) and (34) yield a saddle-path dynamic system in (µ, Y ). The steady state values

of µ and Y are:

µ∗ = c1 (35)

Y ∗∗ =
α

ρc1
(36)

According to (31) and (33), we must have α
φY
≤ λ ≤ α

kφY
. Hence this phase begins at T (see

Eq. (25)), and it ends at Ti defined by:

λ(Ti) =
α

kφY (Ti)
(37)

Moreover, according to (32), we have:

xn(T ) =
1− α
α

φY (T ), xn(Ti) =
1− α
α

kφY (Ti)
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Day and night electricity consumption are given by:

ed = φY, en =
1− α
λ

(38)

A.2.2 Interior storage

In the case of an interior solution on a, Eq. (29) yields:

a = 1− α

kλφY
(39)

Eq. (30) reads:

−kφλ = µ̇− ρµ (40)

This equation can be integrated to obtain µ(t) as a function of µ(Ti), Ti, λ(0) and time,

which allows us to obtain I(t) and, by integration, Y (t) as a function of the same variables

and Y (Ti).

From Eq. (39), a ≥ 0 requires α
kφY
≤ λ, which shows that this phase begins at Ti (see Eq.

(37)). The date at which this phase ends is given by the fact that fossil fuel consumption

at night becomes nil. Then Eq. (28) shows that a = 1−α at the end of this phase, and Eq.

(29) that the date T of the end of this phase is defined by:

λ(T ) =
1

kφY (T )
(41)

Day and night electricity consumption are given by:

ed =
α

kλ
, en =

1− α
λ

(42)

A.2.3 Full storage

Impossible.

A.3 No fossil

This phase is necessarily the last one, and it always exists. It begins at the date at which

the ceiling is reached.

We have xd = 0, xn = 0, ωd > 0, ωn > 0 ∀t ≥ T .
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The FOC then read:

α

(1− a)φY
= λ− ωd (43)

1− α
kaφY

= λ− ωn (44)

a− (1− α)

a(1− a)
= ωa − ωa (45)

µ̇− ρµ = − 1

Y
(46)

to which we have to add Eqs. (14) and (17).

The no storage (a = 0) or complete storage (a = 1) cases cannot occur because the marginal

utility of consumption at night or day would become infinite. Hence the solution is an interior

solution on a, with ωa = ωa = 0. Eq. (45) yields:

a∗ = 1− α (47)

There is a constant rate of storage all along this phase, depending on the weight of night-

electricity in utility.

Eqs. (17) and (46) yield a saddle-path dynamic system in (µ, Y ). The values of µ and Y at

the steady state are:

µ∗ = c1 (48)

Y ∗ =
1

ρc1
(49)

What determines the long run stock of solar panels is the discount rate and the marginal

investment cost.

Finally, Eqs. (43) and (44) imply 1
φY
≤ λ and 1

kφY
≤ λ. The second condition is more

stringent than the first one. It shows that this phase begins at date T (see Eq. (41)).

Day and night electricity consumption are given by:

ed = αφY, en = (1− α)kφY (50)
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A.4 Respect of the carbon budget

The model is completed by specifying that the total quantity of fossil fuel burned cannot

exceed the carbon budget:

X =

∫ T

0

(xn(t) + xd(t))dt+

∫ Ti

T

xn(t)dt+

∫ T

Ti

xn(t)dt (51)

B Variability and intermittency

The current value Hamiltonian associated to the social planner’s programme reads:

H = qu (xd + (1− a)Y, xn + kaY )+(1−q)u (xd + (1− a)φY, xn + kaφY )−C(I)−λ (xd + xn)+µI

and the Lagrangian is:

L = H + ωaa+ ωa(1− a) + ωdxd + ωnxn + ωX
(
X −X

)
The first order conditions are:

q
α

xd + (1− a)Y
+ (1− q) α

xd + (1− a)φY
= λ− ωd (52)

q
1− α

xn + kaY
+ (1− q) 1− α

xn + kaφY
= λ− ωn (53)

qY

[
α

xd + (1− a)Y
− k 1− α

xn + kaY

]
+ (1− q)φY

[
α

xd + (1− a)φY
− k 1− α

xn + kaφY

]
= ωa − ωa

(54)

C ′(I) = µ (55)

− ωX = λ̇− ρλ (56)

− q
[
(1− a)

α

xd + (1− a)Y
+ ka

1− α
xn + kaY

]
− (1− q)φ

[
(1− a)

α

xd + (1− a)φY
+ ka

1− α
xn + kaφY

]
= µ̇− ρµ

(57)
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The complementarity slackness conditions read:

ωaa = 0, ωa ≥ 0, a ≥ 0

ωa(1− a) = 0, ωa ≥ 0, 1− a ≥ 0

ωdxd = 0, ωd ≥ 0, xd ≥ 0

ωnxn = 0, ωn ≥ 0, xn ≥ 0

ωX
(
X −X

)
= 0, ωX ≥ 0, X −X ≥ 0

Before the ceiling, X < X and ωX = 0. Then FOC (56) reads λ̇/λ = ρ, i.e.:

λ(t) = λ(0)eρt (58)

Moreover, Eq. (55) reads: c1 + c2I = µ, which, together with Ẏ = I, yields:

Ẏ =
1

c2
(µ− c1) (59)

B.1 Fossil night and day

We have xd > 0, xn > 0, ωd = 0, ωn = 0. The FOC read:

q
α

xd + (1− a)Y
+ (1− q) α

xd + (1− a)φY
= λ (60)

q
1− α

xn + kaY
+ (1− q) 1− α

xn + kaφY
= λ (61)

to which we add Eqs. (54), (57), (58) and (59).

B.1.1 No storage

ωa > 0, ωa = 0, a = 0.

Eqs. (60) and (61) read:

q
α

xd + Y
+ (1− q) α

xd + φY
= λ (62)

1− α
xn

= λ (63)

Eq. (62) gives implicitly xd as a function of Y and λ. It is a quadratic equation which
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positive root is:

xd =
Y

2

[( α

λY
− (1 + φ)

)
+

(( α

λY
− (1 + φ)

)2
+ 4φ

(
α

φλY
− 1

)) 1
2

]
. (64)

with φ = φ
φq+(1−q) .

Eq. (57) simplifies into:

µ̇− ρµ = −q α

xd + Y
− (1− q)φ α

xd + φY

i.e., using (62):

µ̇− ρµ = −φλ− (1− φ)q
α

xd + Y
(65)

Eq. (54) reads, using (62): (
φk − φ

)
λ < (1− φ)q

α

xd + Y
(66)

with φ = q = (1− q)φ.

With our assumption that initial solar capacity is nil, this phase is necessarily the first one.

It starts at date 0.

At the end of this phase, either xd = 0 (xn = 0 is impossible, since it would require λ→ +∞)

or Eq. (66) is satisfied as an equality, meaning that the next phase will be a phase with

positive storage. Therefore the end of this phase is T or T a respectively defined by:

λ(T ) =
α

φY (T )
and xd(T ) = 0 (67)

λ(T a) =
(1− φ)q

φk − φ
α

xd(T a) + Y (T a)
(68)

A necessary condition for the existence of T a is:

kφ− φ > 0⇐⇒ φ <
1

1 + 1−k
qk

= φ̃0 (69)

meaning that when φ is small enough, reflecting a serious cloud problem, storage must begin

before fossil is abandoned at day. See Figure 12.

If this condition is not satisfied the relevant date of end of this phase is T . It is T as well if

this condition is satisfied but T < T a.
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Figure 12: Boundaries of the two possible solutions in the fossil night and day and no storage
case
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B.1.2 Interior storage

This phase starts at T a. We have ωd = ωn = ωa = ωa = 0, xd > 0, xn > 0 and 0 < a < 1.

The FOC read:

q
α

xd + (1− a)Y
+ (1− q) α

xd + (1− a)φY
= λ (70)

q
1− α

xn + kaY
+ (1− q) 1− α

xn + kaφY
= λ (71)

qY

[
α

xd + (1− a)Y
− k 1− α

xn + kaY

]
+ (1− q)φY

[
α

xd + (1− a)φY
− k 1− α

xn + kaφY

]
= 0

(72)

− q
[
(1− a)

α

xd + (1− a)Y
+ ka

1− α
xn + kaY

]
− (1− q)φ

[
(1− a)

α

xd + (1− a)φY
+ ka

1− α
xn + kaφY

]
= µ̇− ρµ

(73)

The three first equations allow to compute xd, xn and a as functions of Y and λ. Notice

that algebraic expressions of these variables are impossible to obtain.

This phase starts with no storage, at date T a defined in Eq. (68). Necessary condition for

existence: kφ− φ > 0 i.e. φ < φ̃0. a is increasing along this phase.

At the end of this phase (date T b) fossil consumption at day stops. From Eq. (70), date T b
is characterized by:

λ(T b) =
α

(1− a(T b))φY (T b)
(74)

Then Eqs. (72) and (71) yield:

λ(T b) =
qk(1− φ)

φ− kφ
1− α

xn(T b) + ka(T b)Y (T b)
(75)

Again, we only have implicit expressions for λ(T b).

A necessary condition for the existence of T b is φ−kφ > 0, which is always true (see Figure

12).

B.1.3 Full storage

This case with full storage cannot appear under our assumption that initial solar capacity is

nil (note that it is true as well in the variability only case). Indeed, intuitively, full storage

is likely to occur if on the one hand the preference for night-electricity is higher that the

preference for day electricity that is if agents prefer consuming electricity off-peak, and if

on the other hand initial solar capacity is large, so that solar electricity is produced at day
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in excess of the consumption needs. But it will never be optimal to build solar capacity

to obtain this kind of solution at another time than the initial one, because of the loss of

electricity attached to the storage technology.

Relying on these arguments, we exclude in the following the case of full storage.

B.2 Fossil at night only

This or these phases are intermediate. We have here xd = 0, xn > 0, ωd > 0, ωn = 0 and

the FOC read:

α

(1− a)φY
= λ− ωd (76)

q
1− α

xn + kaY
+ (1− q) 1− α

xn + kaφY
= λ (77)

α

1− a
− kY

[
q

1− α
xn + kaY

+ (1− q)φ 1− α
xn + kaφY

]
= ωa − ωa (78)

−α
Y
− ka

[
q

1− α
xn + kaY

+ (1− q)φ 1− α
xn + kaφY

]
= µ̇− ρµ (79)

to which we add Eqs. (58) and (59).

B.2.1 No storage

In the case of no storage, the FOC become:

α

φY
= λ− ωd (80)

1− α
xn

= λ (81)

α− kφY λ = ωa (82)

−α
Y

= µ̇− ρµ (83)

Eqs. (59) and (83) yield a saddle-path dynamic system in (µ, Y ). The steady state values

of µ and Y are:

µ∗ = c1 (84)

Y ∗∗ =
α

ρc1
(85)
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According to (80) and (82), we must have α
φY
≤ λ ≤ α

kφY
. Hence this phase begins at T (see

Eq. (67)), and it ends at Ti defined by:

λ(Ti) =
α

kφY (Ti)
(86)

The existence of this phase requires that:

kφ < φ⇐⇒ φ > φ̃ (87)

See Figure 12. φ must be high enough, meaning that the cloud problem is not too severe. If

this condition is not satisfied this phase does not exist, implying that the phase with fossil

night and day and no storage necessarily ends at date T a. This solves the problem of the

boundaries of validity of T and T a.

Day and night electricity consumption are given by:

eud = Y, eld = φY, eun = eln = xn =
1− α
λ

(88)

B.2.2 Interior storage

In the case of an interior solution on a, Eq. (78) yields:

α

1− a
= kY

[
q

1− α
xn + kaY

+ (1− q)φ 1− α
xn + kaφY

]
(89)

Eqs. (77) and (89) implicitly give a and xn as functions of Y and λ.

Eq. (79) reads:

− α

(1− a)Y
= µ̇− ρµ (90)

At the beginning of this phase there are two possibilities: either fossil fuel night only and

a = 0 or fossil fuel night and day and a > 0.

In case this phase starts with a = 0, from Eq. (89), a ≥ 0 requires α
kφY
≤ λ, which shows

that this phase begins at Ti (see Eq (86)).

In case this phase starts with a > 0 when we stop using fossil during day, Eq. (76) requires

that α
(1−a)φY ≤ λ which shows that this phase begins at T b (see Eq. (74)).

The date at which this phase ends is given by the fact that fossil fuel consumption at night

becomes nil. Then Eq. (89) shows that a = 1 − α at the end of this phase, and Eq. (77)
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that λ = 1
kφY

, showing that this date is T given by:

λ(T ) =
1

kφY (T )
(91)

Day and night electricity consumption are given by:

ed =
α

kλ
, en =

1− α
λ

(92)

B.3 Fossil at day only

Quite intuitively, this case could occur if initial solar capacity was very large, so that it is

optimal to start with full storage at the beginning of the planning horizon, and make storage

decrease in time. It cannot occur under our assumption of nil initial solar capacity.

B.4 No fossil

This phase is necessarily the last one, and it always exists. More precisely, it exists as such

as soon as φ > 0. For φ = 0 fossil consumption asymptotically decreases towards zero.

We have xd = 0, xn = 0, ωd > 0, ωn > 0 ∀t ≥ T .

The FOC then read:

α

(1− a)φY
= λ− ωd (93)

1− α
kaφY

= λ− ωn (94)

a− (1− α)

a(1− a)
= ωa − ωa (95)

µ̇− ρµ = − 1

Y
(96)

to which we have to add Eqs. (58) and (59).

The no storage (a = 0) or complete storage (a = 1) cases cannot occur because the marginal

utility of consumption at night or day would become infinite. Hence the solution is an interior

solution on a, with ωa = ωa = 0. Eq. (95) yields:

a∗ = 1− α (97)

There is a constant rate of storage all along this phase, depending on the weight of night-

electricity in utility.
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Eqs. (59) and (96) yield a saddle-path dynamic system in (µ, Y ). The values of µ and Y at

the steady state are:

µ∗ = c1 (98)

Y ∗ =
1

ρc1
(99)

Finally, Eqs (93) and (94) imply 1
φY
≤ λ and 1

kφY
≤ λ. The second condition is more

stringent than the first one. It shows that this phase begins at date T , which is also the

date at which the ceiling is reached.

Day and night electricity consumption are given by:

eud = αY, eld = αφY, eun = (1− α)kY, eln = (1− α)kφY (100)

B.5 Respect of the carbon budget

The model is completed by specifying that the total quantity of fossil fuel burned cannot

exceed the carbon budget:

X =

∫ T

0

(xn(t) + xd(t))dt+

∫ Ti

T

xn(t)dt+

∫ T

Ti

xn(t)dt (101)

C A polar case: intermittency with no sun at all in

the bad case

Two very different optimal solutions are possible.

If φ is high enough, the optimal solution when intermittency is taken into account is very

close to the one we get when it is not. The succession of phases is the same. Only the

switching dates differ. At the limit, when φ → 1, we obtain exactly the variability-only

solution.

If φ is small we get a very different solution, characterized by a reluctance of the planner to

abandon fossil at day in case of the occurrence of the bad event, which is here actually very

bad, as we have explained above. We illustrate this solution in the limit case where φ = 0.

C.1 Case φ = 0, no storage, fossil night and day

q
α

xd + Y
+ (1− q) α

xd
= λ (102)
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which gives implicitly xd as a function of Y and λ. It is a quadratic equation which positive

root is:

xd =
Y

2

[( α

λY
− 1
)

+

(( α

λY
− 1
)2

+ 4
α(1− q)
λY

) 1
2

]
(103)

λ(T a) =
1

k

α

xd(T a) + Y (T a)

µ̇− ρµ = −q α

xd + Y
= −q α

Y
2

[(
α
λY

+ 1
)

+
((

α
λY
− 1
)2

+ 4α(1−q)
λY

) 1
2

] (104)

Let X = α
λY

. Eq. (103) reads:

xd =
Y

2

[
(X − 1) +

(
(X − 1)2 + 4(1− q)X

) 1
2

]
At date T a we have:

xd + Y =
α

kλ
=
XY

k
=⇒ xd =

(
X

k
− 1

)
Y

Therefore, eliminating xd between these two last equations:(
X

k
− 1

)
Y =

Y

2

[
(X − 1) +

(
(X − 1)2 + 4(1− q)X

) 1
2

]
i.e.

2

(
X

k
− 1

)
= (X − 1) +

(
(X − 1)2 + 4(1− q)X

) 1
2

i.e. (
2

k
− 1

)
X − 1 =

(
(X − 1)2 + 4(1− q)X

) 1
2

which yields: (
2

k
− 1

)2

X2 + 1− 2

(
2

k
− 1

)
X = (X − 1)2 + 4(1− q)X

i.e.(
2

k
− 1

)2

X2 + 1− 2

(
2

k
− 1

)
X = (X − 1)2 + 4(1− q)X = X2 + 1− 2X + 4(1− q)X

i.e. [(
2

k
− 1

)2

− 1

]
X2 =

[
−2 + 4(1− q) + 2

(
2

k
− 1

)]
X = 4

[
1

k
− q
]
X
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i.e. (
2

k
− 2

)
2

k
X = 4

[
1

k
− q
]

i.e.

X =
k(1− kq)

1− k
Therefore:

λ(T a) =
1− k

k(1− kq)
α

Y (T a)
(105)

C.2 Case φ = 0, interior storage, fossil night and day

α

xd + (1− a)Y
= k

1− α
xn + kaY

(106)

q
α

xd + (1− a)Y
+ (1− q) α

xd
= λ (107)

q
1− α

xn + kaY
+ (1− q)1− α

xn
= λ (108)

µ̇− ρµ = −q
[
(1− a)

α

xd + (1− a)Y
+ ka

1− α
xn + kaY

]
(109)

This phase starts with no storage at date T a. It never ends: in the long run, xd and xn tend

asymptotically to zero, and, as shown by the first equation, a tends to a∗.
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