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Abstract: Several empirical studies show that renewable energy sources such as wind and solar

power, typically supplied at low marginal cost, can cause electricity market prices to fall. Recent

theoretical research and simulations also highlight the link between the integration of renewable

energy and market performance in an oligopolistic energy market. This article looks at these

dynamics in the context of cross-border effects between two highly interconnected electricity

markets, France and Germany. Using a rich panel dataset for hourly data from November 2009

to July 2015 and an empirical model developed in New Empirical Industrial Organization (NEIO)

in a dynamic framework, we estimate the impact of German wind and solar power production

on both prices and market power in the French wholesale market. The findings highlight the

importance of coordinating energy policies via joint renewable energy support schemes among

interconnected European electricity markets.

Keywords: Oligopolistic market, market power, renewable energy, electricity prices, panel

data.

1 Introduction

Modeling price behavior in electricity market is a challenging task involving complex technical

and political considerations. Over more than 20 years, Europe has made remarkable progress in

creating liberalized and competitive wholesale markets for trading electricity within and across

national frontiers. In recent years, policy makers have also come to pay serious attention to

the threat of global climate change resulting from the consumption of fossil fuels especially

in the electricity production sector. Consequently, energy policies designed to tackle climate

change have grown dominant in the European power industry. In particular, many countries

have implemented policies for a transition toward a low-carbon economy through the promotion
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of renewable energy sources (RESs, hereafter) in the electricity balance, driven by generous

subsidies and priority dispatch conditions.

The 2030 climate and energy package of the European Council announced in 2014 confirmed

the EU’s 2030 target for tackling climate change by reducing greenhouse gas emissions by 40%

against 1990 levels and increasing the share of renewable energy sources by at least 27%. Achiev-

ing this will require high shares of RESs such as wind and solar power in the electricity supply,

given the limited opportunities for the expansion of hydro power and the widespread opposition

to nuclear power (Newbery et al. [2017]). This target encourages Member States to continue

to subsidize RESs and calls for joint support schemes among two or more EU countries to spur

renewable energy production in one or both of their territories, as recommended in the 2009 and

2016 Renewable Energy Directives of the European Commission. To date, subsidy regimes are

still confined within national action plans while the impact of RESs on the electricity market

can be induced at cross-border level.

In Germany, for example, the promotion of electricity generated from RESs has been driven

mostly via a preferential access to the grid and a feed-in-tariff (FIT) mechanism that guaran-

tees above-market rates, commonly over a 20-year period. The country has achieved its RES

objectives but the question of cost distribution is being raised. Andor et al. [2017] show that

the burden of cost borne by customers (around e125 billion via substantially higher electricity

bills for RES support schemes in the years between the 2000 Renewable Energy Act (EEF) and

2015) can be expected to exceed e400 billion over the next 20 years, which might test the limits

of consumers’ willingness-to-pay. Given this context, it is important to study the impact of

subsidized RESs on electricity markets as they currently operate.

In the short run, RESs such as wind and solar power, typically supplied at low marginal

cost, cause wholesale prices to fall. While numerous studies have been made of this for the

German electricity market (Sensfuss et al. [2008], Ketterer [2014], Cludius et al. [2014], Ederer

[2015]), the magnitude of the ensuing price falls on foreign interconnected markets has been

less widely estimated. In the longer run, high shares of RESs can impact market power (the

possibility that firms may strategically raise the price above the competitive level (Borenstein

et al. [1999])). Such impact is mixed. As proven empirically by Bigerna et al. [2016] in the Italian

wholesale market for the period 2009 to 2013, the exercise of market power was considerably

weakened by RES competition during peak hours, but it was surprisingly reinforced during

some off-peak hours, in the absence of solar RES and in particular zones where congestion led

to market splitting. Again, the impact of RESs on market power within a cross-border context

has not been adequately investigated. This paper studies the impacts of RES production on

wholesale prices and on market power in the context of cross-border effects between two closely

interconnected electricity markets, France and Germany.

Together the French and German electricity markets account for one-third of all EU’s elec-

tricity consumption. The interaction between two markets has a decisive influence on electricity
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prices in Europe. While the French power market is characterized as a centralized and nuclear-

based (75%), the German market is more and more renewable-based and decentralized. In

France, concern has grown about competition in electricity industry because of its extremely

concentrated structure. Although much criticism has been directed at application of the at-

tributes of market concentration when predicting the actual level of market power exercised in

electricity markets (Borenstein et al. [1999], Newbery et al. [2004]), the extremely high market

share of the incumbent firms in the French electricity industry does raise concerns about the

possible exercise of market power in this market. Few empirical studies have investigated market

power in the French power market, and they have been limited to cases in which the interaction

with border exchanges was omitted from the estimation (for example, Meritet and Pham [2015]).

In Germany, the power market has undergone many fundamental changes in recent years with

its policy of promoting renewable energy in its electricity balance. The net installed capacity of

wind and solar power has been increasing substantially from 26 GW (wind) and 11 GW (solar)

in 2009 up to 56 GW (wind) and 43 GW (solar) in 2017, equivalent an increase from 25% to

48% of total net installed electricity capacity in Germany, of total net installed capacity. In the

context of highly interconnected grids and market coupling between two markets, any impact

of RES production on the domestic wholesale market can be expected to be transferred across

borders. This study assesses the extent of market power in the French electricity market and

examines how domestic prices and market power may be impacted by importing wind and solar

output from the German electricity market. In the light of the empirical results, we discuss the

regulatory implications of European policy with respect to building the framework within which

the integrated market is implemented.

The literature over the last 10-15 years offers a wide range of techniques for identifying

market power. Recent research on market power in electricity markets employs the supply

function equilibrium model or residual demand analysis, which is based on access to bid data

for individual firms (Wolak [2000], Wolak [2002], Prete and Hobbs [2015]; Green and Newbery

[1992]; Baldick et al. [2004]). However, detailed bid data are required for such analyses (Newbery

[2009]) but they are not available in the European Power Exchange. We base our analyses on

aggregate market data instead and use insights from New Empirical Industrial Organization

(Porter [1983], Bresnahan [1989]), which has been widely developed for the electricity market

in a dynamic framework by Hjalmarsson [2000], Bask et al. [2011], Mirza and Bergland [2015].

In those papers, the authors use daily or weekly aggregated data, which obviously miss out

on the dynamics of hour-to-hour demand and supply, thereby possibly underestimating market

power especially during periods of low elasticity of demand. Instead, in our paper, we employ

a rich hourly dataset from November 2009 to July 2015 and process it in a panel framework

(Huisman et al. [2007], Keppler et al. [2016]). This enables us to account for the variation in 24

different prices for 24 hours per day due to the combination of the high variability in demand for

electricity and the non-storability of electricity. It is also very relevant as data for solar power
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production are used, the values of which vary significantly from 0 MW during night hours up

to 20 GW during daylight hours.

The remainder of the paper is organized as follows. The next section provides theoretical

foundations for the impact of renewable energy integration on the strategic behavior of conven-

tional electricity producers. Section 3 presents empirical modeling strategies on the identification

of market power under different conditions and describes the data. Section 4 provides the results

and discusses policy implications. The final section concludes.

2 RES integration under perfect competition and with market

power

In this section, we first analyze the impact of market designs for RES development on price

equilibrium and graphical analyses to show how the magnitude varies under perfect competition

and with market power. We then review some recent papers in the literature on relations between

renewable energy and market power in the electricity market.

Market designs for electricity trading over the past 15 years have integrated renewable sup-

port mechanisms, among others, the Feed-In Law1, which requires the inclusion of electricity

produced by RESs in the market as a priority regardless of classic thermal capacities. The

technical and commercial responsibilities for such integration are borne by the grid operator,

who is obliged to take delivery of electricity generated by renewable sources and put it on the

market immediately. Renewable generators sell their output to the system operators at a guar-

anteed price. However, while renewable generators are paid at a set price and do not participate

directly in the spot market, renewable output does impact spot market prices. In fact, when

RES generation such as wind power is integrated in the merit order (supply curve in the elec-

tricity market), it takes the value of short-run “zero marginal cost”, and since it is the first to

be dispatched, energy generated from other sources must move to the right of the merit-order

curve. This phenomenon is referred to in the literature as the “merit-order effect” (Sensfuss

et al. [2008]).

Phan and Roques [2015] recently suggested that a similar effect might occur across borders.

Based on the data from German wind output and French power prices, the authors found a

significant cross-border merit-order effect between two markets. During periods of low demand

in Germany and high demand in France, high RES output such as wind power in Germany may

depress French spot prices. This does not mean that France directly imports electricity from

German wind operators. What happens is that the integration of wind output with zero short-

run marginal cost pushes the merit order curve to the right (figure 1). Prices fall and traders in

neighboring countries will begin to import, resulting in lower prices for importing countries as

1Other means of support my include various forms of low-interest loans and financing packages for investments
in plant for generating electricity from renewable energy sources.
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Figure 1: Merit order with fed-in RES

well. The cross-border merit-order effect has also been estimated for other interconnected mar-

kets, for example, Germany - Austria (Würzburg et al. [2013]) and Germany - the Netherlands

(Mulder and Scholtens [2013]).

The merit-order effect is expected to be more significant under a monopoly than under

perfect competition. This is because as wind integration is high, the residual demand curve

faced by incumbent firms will move to the left, resulting in lower prices, and this amplitude is

more significant in the case of a monopoly where the supply function is steeper than in the case

of perfect competition (figure 2).

Figure 2: Supply functions with RES integration

Figure 2 illustrates the impact on price of integrating renewable energy in cases of both
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perfect competition and market power based on the principle of Nash equilibrium and Green

and Newbery [1992]’s supply function equilibrium model, where supply functions for conventional

firms are bounded between the monopoly solution Si(Monopoly) and the Bertrand-Nash solution

MCi. RES integration shifts the demand curve to the left (residual demand curve) and reduces

the market price accordingly. The closer the supply function approaches Si(Monopoly), the

greater the extent of price change will be as demonstrated by the difference in magnitude between

∆ price in the monopoly case and in the competitive case in figure 2. We illustrate these analyses

more formally using a simple market model in Appendix A1.

Empirical studies of the impact on wholesale prices of introducing RESs have multiplied in

recent years, e.g Gelabert et al. [2011], Würzburg et al. [2013], Ketterer [2014], Cludius et al.

[2014], Clò et al. [2015], Woo et al. [2016]. However, the explicit link between wind integration

and market power in both theoretical and empirical frameworks remains a potential area for

investigation. In the engineering literature, Bitar et al. [2012], for example, investigate how an

independent wind power producer might optimally supply its variable power to a competitive

electricity market, Dai and Qiao [2013] analyze the optimal bidding strategies of wind and

conventional power producers, and Kazempour and Zareipour [2014] study electricity market

equilibria in the presence of renewable supplies.

In the economic literature, Twomey and Neuhoff [2010] was perhaps among the first papers

to address the issue of RES introduction and market power in a theoretical framework with

the consideration of forward contracts. The authors show that under market power conditions,

thermal generators with market power can react strategically to the level of wind output: they

can further depress prices if they have to buy back energy at times of plentiful wind output

and can raise prices if they have to sell additional power at times of little wind output. Thus,

while it is difficult to avoid all market power in electricity markets, allowing market power profit

margins as a support mechanism for investment in generating capacity is not a technologically

neutral policy2. Acemoglu et al. [2017], recently extended the analyses to account for the

diversification of thermal generators’ energy portfolios. They found that if thermal generators

control some or all of the renewable supplies, they offset losses from the merit-order effect by

strategically withholding their conventional energy supplies when renewable supply is abundant.

The authors suggest that diversified energy portfolios might be welfare reducing. Ciarreta et al.

[2017] propose a more detailed study of strategic behaviors by each thermal generator. They

find that while nuclear, hydro-power, or coal generators do not change their behaviors, combined

cycle bidding strategies have evolved to adapt to the introduction of RESs. The authors argue

that, in the short run, the massive entry of RESs may make conventional generators’ behavior

more competitive. In an empirical framework, Bigerna et al. [2016], using data from 2009 to

2013 to construct the residual demand curves and compute the zonal Lerner indexes for main

2A limited amount of market power is sometimes accepted if it is necessary to guarantee revenues to cover
some of the fixed costs and/or encourage capacity expansion.
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generators in the Italian wholesale market, find that market power was considerably weakened

by RES competition during peak hours, yet it was exacerbated during some off-peak hours, in

the absence of solar power and in particular zones in which congestion led to market splitting.

However, the application of such a method requires detailed bid data (Newbery [2009]).

In line with this literature, we propose an empirical investigation of the French electric-

ity market in the context of cross-border analysis using historical time-series data. We study

whether German massive RES production (both wind and solar) has induced price falls and

competitive behavior in the French wholesale electricity market. While empirical strategies to

measure the impact of RESs on wholesale prices are relatively straightforward thanks to the

exogeneity of RES data, the impact of RESs on market power level is more challenging due to

the problem of identifying the market power parameter.

3 Empirical application

3.1 Empirical model for identifying market power parameter

In this section, we present empirical model used to identify market power. We then extent it

to account for solar and wind power output. We base the analyses on aggregate market data

and use insights from New Empirical Industrial Organization (Porter [1983] Bresnahan [1989]),

which has been widely developed for the electricity market by Hjalmarsson [2000], Bask et al.

[2011], Mirza and Bergland [2015], Meritet and Pham [2015] in a dynamic formulation.

Consider the firm-level profit:

πi = P (Q,X)qi − Ci(qi,W ), for i = 1, . . . ,m (1)

where P (.) is the inverse demand function, P is the price, Q is the quantity demand, X is a

vector of exogenous variables affecting demand, qi is the firm-level output, Ci is the firm-level

cost function with W a vector of input prices. The first-order condition for the profit maximizing

firm is to equate the perceived marginal revenues (MRp) with marginal costs (MC):

P (Q,X) + qiP
′(Q,X)

δQ

δqi
= MCi(qi,W ) (2)

Since firm-level data is generally unavailable, equation 2 is aggregated over all firms to give the

general form of the industry-level supply relation.

Let the demand and supply relation (2) be linear. Price elasticity of demand is retrieved

from the aggregate demand function:

Q = D(P,X, α) + ε (3)

where α is a vector of parameters of the demand function to be estimated and ε is the error
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term.

The industry supply relation takes the relation in Eq(2) and empirically gives:

P = MC(Q,W, β)− λ.h(P,X, α) + η (4)

he where β is the vector of parameters of tsupply function with η the error term. MC(.)

designates the marginal cost function. P + λh(.) is the marginal revenue as perceived by the

firm (MRp) with h(P,X, α) = Q/ δQ(.)
δP being the semi-elasticity of market demand. The demand-

side parameters and exogenous variable are in h(.) because they affect the marginal revenue. In

perfect competition MC = MRp = P and λ = 0, but when market power is present, MRp < P

and 0 < |λ| < 1. λ is now a new parameter indexing the degree of market power. From (4), the

price-cost margin can be derived as: P −MC = −λ.Q/∂Q(.)
∂P . Lerner’s measure is given by:

L ≡ P −MC

P
= −λQ

P

∂Q(.)

∂P
= −λ

ε
(5)

where ε is the market elasticity of demand. Because λ lies in the closed set [0,1], it follows that

L ∈ [0, 1/ε] with ε < 0. Thus, λ can be interpreted as an index of market power3.

The remaining problem is to identify λ. Bresnahan [1982] and Lau [1982] give conditions on

the functional form such that λ is identified by introducing a vector Z, entering the model to

both shift and change the slope of the demand curve (rotation vector PZ ). The supply relation

(4) in linear form is given as:

P = βQQ+ βWW + λQ∗ + η (6)

with Q∗ = Q(αP + αPZZ)−1. By treating αP and αPZ as known (from estimating the

demand equation), λ is now identified and takes a negative sign if market power is present

under the condition (4)4. Another way to identify the market power parameter λ is to allow

quantity to interact with input prices (Devadoss et al. [2013]).

Empirical strategy: contemporaneous correlation between the error terms

The electricity industry has a distinguishing feature which makes modeling it different from

other markets. Due to the combination of the high variability of demand for electricity and the

non-storability of electricity, there are 24 different prices for the 24 hours of each day. However,

these outcomes are published simultaneously the day ahead. Consequently, the 24 hourly

prices should not be treated as continuous observations. Any attempt to model electricity prices

should take this into account.
3λ is also referred to in the literature as the industry-level conjectural elasticity. In equation 2, λ =

∑m
i=1

qi
Q
λi

4The inclusion of the rotation variable PZ in the demand function is crucial for identifying the degree of market
power. If we exclude PZ from the demand function, equation (6) would be rewritten as P = φQ + βWW + η
where φ = (βQ − λ

αP
). The supply relation is still identified but the degree of market power λ is not. The φ that

we estimate cannot tell us the degree of market power λ because it depends on both βQ and λ, thus the supply
relation (tracing market power) will be indistinguishable from the supply curve (representing perfect competition).
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One common way to treat the data in this market is to implement a multivariate model,

as done by Crespo Cuaresma et al. [2004], Bordignon et al. [2012]; Weron and Misiorek [2008].

This method is appealing because it can capture coefficients for separate hours. However, there

will be too many parameters to estimate as we increase the number of exogenous variables and

instruments. A condition under which the issue of having too many parameters can be solved

is to assume contemporaneous correlation between the error terms. This assumption says that

the error terms in different equations, at the same point in time, are correlated. Indeed, these

errors contain the influence on demand and supply that have been omitted from the model,

such as changes in market regulation, the general state of the economy. Since the individual

hourly prices share a common dynamic in many respects, it is likely that the effects of the

omitted factors on hour, say h8, will be similar to their effect on hour h9. If so, then the error

terms ε
(h8)
t and ε

(h9)
t as well as η

(h8)
t and η

(h9)
t will capture similar effects and will be correlated

(Keppler et al. [2016], Huisman et al. [2007]).

We develop a structural model in a panel framework that allows for a common dynamic across

all hours and a variation in the coefficients for each hour. With h denotes hours h = 1 . . . 24 and

t denotes days t = 1 . . . T , the resulting econometric model for one-way error component panel

framework is:

Demand equation:

Qht = α0 + γQht + αPPht + αZZht + αPZPZht + εht (7)

with

εht = µh + υht (8)

where µh denotes the unobservable hour-specific effect and υht denotes the remaining disturbance

in the one-way error component panel model.

Supply relation:

Pht = β0 + φPht + βQQht + βWWht + λQ∗ht + ηht (9)

with

ηht = νh + τht (10)

where νh denotes the unobservable hour-specific-effect and τht denotes the remaining disturbance

in the one-way error component panel model.

Model extension: Introducing wind and solar production

To implement parametric tests for a possible shift in the market power parameter λ due to

RES integration, we need to extend the model. Two new variables - wind output (wind) and
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solar output (solar) - are included in the supply relation (9) in such a way that they interact

with Q∗:

Pht = β0 + φPht + βQQht + βWWht + λQ∗ht + λwindQ∗windht + λsolarQ∗solarht + ηht (11)

λwind and λsolar are estimated separately because of the high variation of solar data, whose

values vary significantly across the hours. This confirms the relevance of our empirical strategy,

which allows for this variation.

3.2 Data

The data concern the period from 27/10/2009 to 20/07/2015, providing a very rich panel dataset.

Hourly data for electricity spot prices (in e/MWh) and volume traded (in GW) in the French

wholesale electricity market are collected from the European Exchange market5.

Electricity prices exhibit a strong seasonality in the intra-day, daily, weekly and seasonal

dynamics due to the strong seasonality of demand for electricity. For example, demand is lower

in the weekend and particularly on public holidays due to reduced economic activity. It is higher

on average in winter than other seasons of the year due to the high need for electricity for heating

in winter. To control for the bank holiday effects, we include a dummy variable which takes the

value of 1 at weekends and on public holidays in France and 0 otherwise (Bessec et al. [2016]). To

deseasonalize the demand series, we include a set of dummy variables in the demand function:

for each season
∑3

S=1 St where S stands for seasons of the year (Hickey et al. [2012]).

The two main exogenous factors affecting the demand for electricity are temperature (de-

mand for heating) and the length of the day (demand for lighting)6. Temperature is a purely

exogenous instrument for identifying the supply relation and a major determinant of European

electricity consumption (Bessec and Fouquau [2008]). In France, this influence is particularly

noticeable in winter with the usage related to heating. We use the national temperature in-

dex constructed from a range of meteorological stations (32) distributed optimally throughout

France for each hour7. Hourly temperature date are published by ERDR (the French distri-

bution system operator). The influence of the length of day on electricity usage is represented

through the demand for lighting. This is calculated based on the time duration from sunrise to

sunset in France. Daylength is available at daily frequency.

5The turnover in the French wholesale electricity market is used to estimate the demand function (7) (Hjal-
marsson [2000], Bask et al. [2011]). Though a relatively small part (about 15% in 2014) of the total load, this
spot demand is subject to price elasticity unlike total demand, of which a large proportion is sold at regulated
tariffs in the retail market or is subject to long term transactions. However, in estimating marginal cost and the
supply relation, it is vital to take full account of the total demand.

6Other usages that consume electricity are industrial activities and transportation. However, aggregate indus-
trial production is relatively stable for hourly and daily patterns. Seasonal variations are more apparent. This is
largely controlled for in the model through the inclusion of dummy variables for season. Electricity consumption
for transportation can be varied at hourly frequency but seems to exhibit less stochastic properties than other
factors such as Temperature. A large part of its variation is captured through fixed hours effects.

7The temperature difference among regions is also covered by the national temperature data.
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The main exogenous variables in the input price vector W of the supply equations include:

forecasted total load, gas price, carbon price, capacity margin, total net exchanges with Germany,

Spain, the UK, Switzerland and Italy; and German RES production (wind and solar), which

are available at hourly frequency except for gas and carbon prices. We take into account the

time release of spot prices and volumes in defining other explanatory variables in the supply

equation: any information released after market clearing (at noon) will be considered in lagged

(t− 1) – Figure 3.

Figure 3: Time framework of market information release

Forecasted total load gives information about which technology should be mobilized in the

merit order, thus helping to determine the marginal plant as well as marginal cost. We used

the 24 hourly day-ahead forecasted load data for continental France released by the RTE at

midnight on day t− 1.

We used gas and carbon prices as the main drivers for the marginal costs of the supply

relation. Although gas plants make up a very small part of the electricity mix in France (10%),

they might affect French electricity market prices following the merit-order logic discussed in

section 2. Because the French market is connected with neighboring countries’ networks, the

marginal plants of the interconnected zone are most of the time coal or gas plants, which

constitute half of electricity production in Germany or Italy (Champsaur et al. [2011]). The

European Gas Index (EGIX) published by the European Energy Exchange (EEX) was used8.

The carbon price represents an additional cost for electricity generated from fossil fuels. It may

be either a direct cost, if CO2 allowances are purchased, or an opportunity cost, if allowances

are received free of charge (De Perthuis and Jouvet [2011]). Thus, electricity producers add the

carbon price to their marginal costs. We used the European Emission Allowances prices which

are released by EEX on a daily basis. To avoid any endogeneity problems, we used lag-1 of gas

and carbon price (Bessec et al. [2016]).

8This index is based on all exchange trades concluded in the respectively current front month contracts of the
NCG and GASPOOL market areas on the Derivatives Market. On the basis of these trading transactions EEX
then calculates a volume-weighted average price across all transactions.
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Forecasted cross-border net traded volumes with the neighboring countries in the intercon-

nected zone (Belgium, the UK, Germany, Spain, Italy, and Switzerland) are also taken as factors

which alter marginal cost. The French transmission system operator RTE provides the balance

for each hour at the end of the afternoon for the following day. For this reason, we used lag-1

values.

The capacity margin, which refers to the difference between the available generating capacity

and forecasted load, is also used as input prices. When the margin is large, only the least costly

generating means are used, resulting in low system marginal costs and spot prices. Conversely,

if there are tensions on electricity system (the margin is small), the more expensive generating

means are used, increasing daily auction prices. The RTE publishes the forecasts for the capacity

margin of the French electricity grid for the morning and evening peak-load times every day at

8 p.m. We used the margin of the morning peak available throughout the year.

We included German wind and solar power generation in the marginal cost function of the

French day-ahead market to estimate the cross-border merit-order effect, as given in Equation

(A.15). Wind and solar outputs per quarter-hour were collected from different German trans-

mission system operators (Tennet TSO, 50 Hertz, Amprion, EnBW). We took the average of

four quarter-hours to get the hourly data.

Table 1: Descriptive statistics

Variable Unit Mean Median Sd Skewness Kurtosis

Price e/MWh 43.3 43.47 18.58 2.784 77.15
Turnover GW 7.078 6.694 2.067 1.503 6.364
German wind GW 5.38 3.847 4.898 1.69 6.321
German solar GW 2.797 0.124 4.737 1.989 6.388
Total load GW 55.17 53.25 12.59 0.528 2.642
Temperature Celcius 12.42 12.5 6.519 -0.0748 2.28
Daylength Hours 12.12 12.22 2.724 -0.0286 1.574
Gas price e/MWh 21.17 22.55 5.247 -0.815 2.575
Carbon price e/t C02 9.406 7.67 4.091 0.229 1.656
Capacity Margin GW 7.535 7.063 2.685 0.903 3.996
Net exchanges Germany GW -0.807 -1.132 1.684 0.292 1.892
Net exchanges UK GW 0.873 1 1.13 -0.989 3.111
Net exchanges Belgium GW 0.897 0.991 1.237 -0.178 1.96
Net exchanges Spain GW 0.247 0.264 0.782 -0.172 1.632
Net exchanges Italy GW 1.935 2.256 0.791 -0.687 2.597
Net exchanges Switzerland GW 2.334 2.569 0.811 -1.296 4.775

Sample period: 27/10/2009 to 20/07/2015, yielding N = 2092 for gas, carbon price, and daylength,

which are of daily frequency, and N = 50208 for prices, turnover, temperature, total load, volumes of net

exchanges, capacity margin, wind and solar outputs, which are of hourly frequency.

Table 1 shows summary statistics for sample variables. Skewness and kurtosis suggest a non-

Gaussian distribution of price data. Skewness is highly positive and the kurtosis is at a very
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high level, indicating the presence of extreme values. Several non-linear econometric models

have been developed in the literature to take into account this feature of price data, such as the

Generalized Autoregressive Conditional Heteroscedastic (GARCH) model or switching models

(Markow switching and threshold autoregressive). However, estimating these non-linear param-

eters in our modeling context is intractable. We therefore decided to remove those extreme

observations from our regressions (Cuaresma et al. [2004])9. Several unit root tests (Augmented

Dickey-Fuller, Phillips Perron, Levin-Lin-Chu, and Im-Pesaran-Shin) were applied to each vari-

able; all series were found to be stationary at the usual significance levels10.

4 Empirical results

We estimated both the demand function (7) and the supply function (11). Because we en-

countered the problem of endogeneity in both demand and supply functions, these models were

estimated using the two-stage generalized method of moments (GMM). We used Stock-Watson

bias-corrected heteroscedastic-robust standard errors (SEs) to make the estimates robust against

any problem of heteroscedasticity. The cluster-robust SEs, proposed by Miller et al. [2009] and

Thompson [2011], were used to assure that the estimators are consistent to arbitrary within-

panel autocorrelation.

We introduced lag terms of dependent variables for two equations (7) and (11). The bias

induced from the correlation between lagged variables yh,t−i (lagged Q and lagged P ) and

µh and νh components was corrected by including the fixed effects (FE) estimator (Within

transformation). Nickell [1981] shows that the dynamic panel models with fixed effects are

biased of (1/T ) but as T −→ ∞, the fixed-effects estimator becomes consistent because the

bias would not be large. Furthermore, the fixed effects models seem to be a more appropriate

specification for our dataset in which the individual dimension N (hours) is relatively small.

Thus, it would not lead to a loss of degrees of freedom. We justified this choice by Hausman

specification test (Hausman [1978]), which assumes the random effects (RE) estimator to be fully

efficient under the null hypothesis. The results of the Hausman test gave the overall statistics,

χ2(7) for the demand equation and χ2(13) for the supply relation, having p − value = 0.000.

This led the clear rejection of the null hypothesis that RE provides consistent estimates.

In the following, results for the demand function (7) and supply relations (11) are presented

in turn.

9We detected the outliers by a non-parametric method, i.e. removing the values smaller than the lower outer
fence (Q1−3∗ IQ) or greater than the upper outer fence (Q3 + 3∗ IQ) where Q1 and Q3 are the lower and upper
quartiles (defined as the 25th and 75th percentiles) and IQ is the interquartile range, defined as Q3 −Q1.

10Even though the Fisher-type tests cannot reject the null hypothesis (presence of unit-root) of the gas price
variable, the Levin-Lin-Chu and Im-Pesaran-Shin tests suggest a stationary variable. We decided to keep the gas
price in level in the final specifications.
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4.1 Demand function

The two-stage generalized method of moments (GMM) was employed to estimate the demand

function (7). To be able to identify the degree of market power, we let the spot price interact

with temperature Hjalmarsson [2000], Bask et al. [2011]. This interact term (P ∗ Temp) enters

the demand equation to both shift the demand curve and change the slope of demand by

prices (Bresnahan [1982], Devadoss et al. [2013]). It is considered endogenous and needs to

be instrumented in the demand regressions.

To control for endogeneity in Pht and Pht∗Tempht, the matrix of excluded variables including

lagged (1) values of carbon prices, gas prices and exchange balances with neighboring markets as

well as lag-1; lag-7 of power price and forecasted load are used as instruments. The results of the

first stage were convincing with very high R2 and F-statistics (Summary results for first-stage

regressions including under-identification and weak-identification tests are presented in A.2.6).

Table 2: Second stage GMM estimation results of the demand equation

Variables coef Robust Std.Err t stat p-values [95% Conf.Interval]

Price -0.0253*** (0.000783) -32.34 0.000 -0.0268 -0.0238
P*Temperature 0.00117*** (8.80e-05) 13.30 0.000 0.000999 0.00134
Turnover(-1), 0.778*** (0.00211) 368.8 0.000 0.773 0.782
Temperature -0.0860*** (0.00389) -22.09 0.000 -0.0936 -0.0783
Daylength 0.0214*** (0.00314) 6.815 0.000 0.0153 0.0276
Holidays -0.520*** (0.0281) -18.51 0.000 -0.575 -0.465
Summer -0.0539*** (0.00854) -6.317 0.000 -0.0706 -0.0372
Spring -0.159*** (0.00757) -21.04 0.000 -0.174 -0.144
Fall -0.0422*** (0.0105) -4.006 0.000 -0.0629 -0.0216

Robust standard errors in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

We included autoregressive distributed lag terms to get the long-term parameters (Hjal-

marsson [2000], Bask et al. [2011]). We started with k = 7 then tested our models by excluding

non-significant lags. The results suggest that only the lag-1 of the turnover Q is kept. This can

be an issue when there is a one-day public holiday, which we would not expect to impact on

demand the following day. That is why we introduced the variable Holiday which accounts for

weekend and public holiday effects.

The second stage GMM estimation results for the demand function are reported in table

2. The parameter estimates are highly significant and have the expected signs. The coefficient

associated with Price has a negative sign as expected in a standard demand equation. This is a

highly important result because it shows that our instruments successfully identified the demand

equation. The elasticity of demand by price remains relatively low as expected in the electricity

market: eP = αP ∗ PQ = −0.154% (-0.164 and -0.145 at 95% CI). The coefficient of Temperature

is negative, suggesting that demand for electricity decrease with the increase in temperature.
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This is because electricity demand in France is highly sensitive on cold days due to heating needs.

The corresponding elasticity of demand by temperature is etemp = αtemp ∗ tempQ
= −0.15% (-0.16

and -0.13 at 95% CI). However, the positive sign of P ∗Temperature suggests that the elasticity

of demand by price tends to increase when temperature increases and the demand is also less

elastic to temperature when prices are high. The remaining coefficients are also significant

and have the expected signs: Demand tends to be higher with longer Daylength (explained by

electricity consumption for lighting) and tends to be lower at weekends and on public holidays

(due to the reduction of industrial activities or transportation uses). As expected, demand for

electricity is greater in winter with the presence of cold days (the coefficients associated with

Summer, Spring, and Fall are significant and negative).

4.2 Supply relations and the market power parameter

The two-stage generalized method of moments (GMM) was employed to estimate the supply

relations (11). The excluded variables temperature and daylength were used as instruments

to identify the supply functions. We kept the autoregressive terms AR(1 − 7). In the final

specification, marginal costs were assumed to be quadratic in the quantity (Kim and Knittel

[2006]). Summary results for first-stage regressions including under-identification and weak-

identification tests are presented in A.2.7. The second stage GMM estimation results for the

supply relations are reported in table 3.

The parameter estimates for the supply function are also generally significant and have

the expected signs, suggesting that the model’s estimates have well measured the sensitivity of

marginal cost to cost shifters. The results show that the marginal cost is convex in quantity (the

coefficient associated with Load is positive and that with Load squared is negative). Both gas

price and carbon price tend to have positive impacts on electricity prices. As explained earlier,

though the share of gas and coal generation technologies account for a very small part of the total

annual marginality duration in France, the marginality of gas and coal on electricity prices in

France is explained mostly through exchanges with neighboring countries like Germany and Italy

where gas and coal represent a large share of the technology mix (the cost for carbon emissions

is the highest for coal plants). Both wind and solar output from the German electricity market

are found to have a significantly negative impact on French spot prices; i.e, the cross-border

merit-order effect of RES output is suggested to be significant between France and Germany.

The cross-border merit-order effect of wind is higher than that of solar: An extra 1 GW of wind

output in Germany tends to reduce electricity prices in France by 0.325 e/MWh and an extra 1

GW of solar output in Germany tends to reduce electricity prices in France by 0.0672 e/MWh

on average, ceteris paribus.

The market power parameter, λ, associated to Q∗ in the supply relation is statistically

significant and has a negative sign. This proves that market power was present in the electricity

market in France during the studied period even though it was relatively weak. Price-cost
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Table 3: Second stage GMM estimation results of the supply equation

Variables coef Robust Std.Err t stat p-values [95% Conf.Interval]

Q* -0.00428*** (0.00134) -3.187 0.00144 -0.00691 -0.00165
Q*wind 0.000270*** (9.67e-05) 2.796 0.00518 8.08e-05 0.000460
Q*solar 0.000293*** (8.63e-05) 3.390 0.000700 0.000123 0.000462
Load 0.874*** (0.129) 6.763 0.000 0.621 1.127
Load squared -0.00379*** (0.00104) -3.663 0.000249 -0.00582 -0.00176
Gas price 0.594*** (0.0337) 17.65 0.000 0.528 0.660
Capcity Margin -1.065*** (0.0452) -23.56 0.000 -1.154 -0.976
Carbon price 0.326*** (0.0340) 9.588 0.000 0.259 0.392
German wind -0.325*** (0.0317) -10.22 0.000 -0.387 -0.262
German solar -0.0672* (0.0366) -1.836 0.0663 -0.139 0.00453
Net exchanges Germany 0.143** (0.0611) 2.334 0.0196 0.0229 0.262
Net exchanges UK -0.275*** (0.105) -2.619 0.00882 -0.481 -0.0692
Net exchanges Belgium -0.295*** (0.0934) -3.162 0.00157 -0.478 -0.112
Net exchanges Spain 0.643*** (0.125) 5.141 2.74e-07 0.398 0.889
Net exchanges Italy -0.893*** (0.183) -4.870 1.12e-06 -1.253 -0.534
Net exchanges Switzerland -0.686*** (0.151) -4.541 5.61e-06 -0.982 -0.390
Holidays -3.918*** (1.209) -3.240 0.00119 -6.287 -1.548
AR (1) 0.272*** (0.0167) 16.27 0.000 0.239 0.305
AR (2) 0.0356** (0.0169) 2.102 0.0356 0.00240 0.0688
AR (3) 0.0485*** (0.0136) 3.578 0.000347 0.0219 0.0751
AR (4) 0.0515*** (0.00741) 6.960 0.000 0.0370 0.0661
AR (5) -0.0113 (0.0150) -0.750 0.454 -0.0407 0.0182
AR (6) 0.0680*** (0.0101) 6.731 0.000 0.0482 0.0879
AR (7) 0.0991*** (0.0160) 6.202 5.59e-10 0.0678 0.130

Robust standard errors in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

margins (Lerner Index) in the short and long term were estimated using equation (5) and

presented in the table 4. The long-term parameter was obtained by incorporating the adjustment

speed, 1−
∑k

i=1 γi, where γi are estimated parameters for ARk (Steen and Salvanes [1999]). They

are both statistically significant but remain at relatively low levels: prices are suggested to be

0.27% in the short run and 0.14% in the long run above the marginal cost (at industry-level).

However, this effect tends to further decrease with increasing import of wind and solar power

from Germany. The parameters λwind and λsolar in equation (11) are both significant and have

positive signs. This implies that when wind and solar production increases, the negative value

of λ becomes less obvious. It further implies that German RES outputs mitigate the extent of

market power level in France. These results support previous theoretical work and simulations

such as Twomey and Neuhoff [2010] and Ciarreta et al. [2017].

Table 4: Estimated Lerner Indexes

Estimates Std. Err. t-stat p− values [95% Conf. Interval]

LI short term 0.0276171 0.0086658 3.19 0.001 0.0106324 0.0446018
LI long term 0.0144364 0.0045429 3.18 0.001 0.0055324 0.0233404

It is important to note that mark-ups were found to be significant in France but relatively
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low during the studied period. This is probably related to an extremely tightly regulated model

in the French electricity market. Indeed, the volumes traded in the “market” segment make up

only 15-17% of domestic delivery and there were regulated tariffs in this market, which were

generally lower than the market prices11. This latter further reduced market liquidity in the

electricity sector in France. Accordingly the level of estimated mark-ups should be interpreted

in this context.

4.3 Cross-border effects

Based on the results of RES coefficients obtained from the regression of the supply function,

the average cross-border merit-order effect as well as the annual financial volume of the merit

order-effect can be estimated (as in Sensfuss et al. [2008]; Cludius et al. [2014]) by:

v = ∆RES ∗Demand = βRES ∗RES ∗Demand (12)

where v (in e) refers to the annual financial volume of cross-border merit-order effect created by

German wind or solar power generation in the French day-ahead market; ∆RES (in e/MWh)

is the average cross-border merit order which is equal to the specified effects multiplied by the

volume weighted wind or solar generation. These values are estimated for every year of 2010 to

2014 and given in table 5.

Table 5: Volumes of cross-border merit order effects

2010 2011 2012 2013 2014

Coef. [95% CI] Coef. [95% CI] Coef. [95% CI] Coef. [95% CI] Coef. [95% CI]

∆Wind 1.34 1.6 1.09 1.69 2.01 1.37 1.69 2.02 1.37 1.94 2.32 1.57 2.08 2.48 1.68

∆Solar 0.05 0.11 0 0.15 0.31 0.01 0.21 0.44 0.01 0.23 0.48 0.02 0.26 0.53 0.02

v (be) 0.68 0.81 0.55 0.8 0.95 0.65 0.82 0.97 0.66 0.94 1.12 0.76 0.95 1.14 0.77

The average impact of German wind integration on French electricity wholesale prices varies

between 1.34 e/MWh in 2010 and 2.08 e/MWh in 2014. The average cross-border merit-

order effect created by German solar power, though less significant than that of wind power12,

increased significantly from 0.05 e/MWh in 2010 to 0.26 e/MWh in 2014. The total annual

financial volume in the French market is estimated to be between e0.68 billion in 2010 (0.81 and

0.55 at 95% CI) and e0.95 billion in 2014 (1.14 and 0.77 at 95% CI). This non-negligible amount

of financial volumes created by German RES production benefited only a privileged group of

consumers in the French wholesale market, mainly energy-intensive companies. This result

suggests a possible wealth transfer from German households, who bear the cost of supporting

11For example, TARTAM “Tarifs réglémentés transitoires d’ajustement au marché ”, or, more prosaically “tariff
of return” or ARENH (Regulated access to historical nuclear energy) set by the government to protect consumers
from high and volatile market prices.

12Note that the estimates given in table 5 are weighted values; i.e. the average effects of wind and solar power
do not distinguish two possible cases: when high solar production coincides with high prices during peak-hours,
the cross-border effect is assumed to be substantially higher than in the case of low solar output during off-peak
hours.
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RES through their electricity bills, to foreign industrial consumers, who benefit from lower prices

in the wholesale electricity market.

Our results also demonstrate that German RES integration also induces market power miti-

gation in the French day-ahead market. Indeed, at national level, France has a high proportion

of nuclear power in its electricity mix, which allows a relatively stable and flat marginal cost

curve for most of the time. However, during peak-load periods, prices can reach very high levels

(equal to or more than the marginal cost of the most expensive plants). With a high level of

RES integration, the supply function is shifted to the right, causing the capacity utilization

rates of high marginal cost coal- and gas-fired plant to fall. It is more difficult for incumbent

firms to exercise market power in this case than when the mix is more diverse. Consequently,

with a high share of RES supply, there would be less scope for conventional operators to exer-

cise their market power by strategically withholding their capacity because withholding nuclear

capacity would only be a profitable strategy if there were no higher-cost plants available and

conditions were such that a firm would have so much nuclear capacity that it had nothing more

expensive to withhold. Thus, the only means of exercising market power in this case is probably

to withhold the capacity of hydro plants because they can react rapidly. But this choice is

undoubtedly limited when the renewable output is high enough. This effect seems to be true for

the cross-border analysis because when the transmission lines are not congested, massive RES

output from Germany can flow to the French electricity market inducing the same effect in the

French market.

4.4 Robustness check

In the above specifications, the demand function is assumed to be linear. As suggested in

Kim and Knittel [2006], the NEIO estimates can be sensitive to functional form changes to

demand. Our first robustness check alters the functional forms for the demand function and

supply relations in log-linear forms. The results remain robust for almost all estimates (Table

A.2.8 and A.2.9). Comparing the Akaike and Bayesian information criteria (AIC and BIC)

among linear and log-linear models, the linear specifications (both demand and supply functions)

give better model fit.

One shortcoming with our panel specification is that the estimates are not allowed to vary

by peak and off-peak hours. The second robustness check adjusts our sample so that this is

less of an issue. We implemented four sup-samples of the data corresponding to four demand

profiles (Bessec et al. [2016]): the morning peak (from 8 am to 12 am); the afternoon trough

(from 01 pm to 4 pm); the evening peak (from 6 pm to 11 pm) and the night trough (from

00am to 7am). The results suggest that demand is most elastic to price during the night trough

and least elastic to price during the evening peak (Table A.2.10). The cross-border effects of

German wind output on price levels in France are found to be significantly high except for the
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evening peak hours (-0.32 e/MWh during the night and about -0.571 e/MWh during the day

for an additional GW of wind output, ceteris paribus). The cross-border effects of German solar

output on price levels in France are insignificant during the evening and the night as expected

due to the insignificant level of solar production for those hours. However, the merit-order effect

of solar power is found to be particularly high in the afternoon trough hours: an additional

increase of 1 GW of solar output in the German market would lead to a reduction of nearly

0.7 e/MWh of spot prices in the French market, ceteris paribus. Regarding the market power

parameter, the results are less robust during the afternoon trough: λ is found to be significantly

positive for those 4 hours (h13 to h16). As the results for the other 20 hours of the day are

generally consistent with those found in table 4.2, we conclude that our estimates are robust.

5 Conclusion

In this paper we have estimated the impacts of wind and solar integration on electricity prices

and on the market power parameter in the context of cross-border effects between France and

Germany. We take advantage of unique hourly data that allow us to estimate the market

power parameter at industry-level taking into account the variation in demand across hours.

Our estimates, based on a sample of 24 hourly French wholesale prices from November 2009 to

July 2015, suggest that RES integration can have a significant impact on cross-border power

price dynamics, not only reducing prices but also mitigating the level of market power. These

results have relevant policy implications for market power mitigation and for coordinated cross-

border energy policies in European electricity markets. Given the high burden borne by German

households to support RES development, it is crucial that renewable support policies should be

discussed on an inter-state instead of a national basis.

Results such as these can be used to support a variety of follow-up analyses, as well as

subsequent adjustments to firms’ potential strategic behaviors. Our analyses assume that suf-

ficient capacity is made available for wind output from German market to be transmitted to

the French market and impact French electricity prices accordingly. However, as many previous

studies proved, profit-maximizing firms can take advantage of network congestion moments to

exercise their market power; firms knowing about their potential market power as transmission

capacity binds could deliberately congest transmission lines to take advantage of it. This would

become an issue when a firm has a diversified portfolio. The results of this article can thus be

used as inputs for subsequent modeling, assuming that incumbent firms also own wind facilities

and including further crossed effects of wind output and network congestion on firms’ behaviors.
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durable et de l’énergie, 2011. 11

20



Aitor Ciarreta, Maria Paz Espinosa, and Cristina Pizarro-Irizar. Has renewable energy induced

competitive behavior in the spanish electricity market? Energy Policy, 104:171–182, 2017. 6,

16
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A Appendix

A.1 Variation of mark-ups under RES integration and transmission con-

straints

In this appendix we use simple market models to demonstrate the variation in price-cost markup

with respect to changes in RES output. In the first case, we assume sufficient transmission

capacity is made available for the RES output from the German market to be transmitted to

the French market and impact French electricity prices accordingly. In the second case, cross-

border exchanges between France and Germany may be subjected to congestion because of

transmission constraints.

We consider two different types of suppliers: (1) conventional generators whose collective

output Qi =
∑n

i=1 qi with qi is supply of the ith firm; and (2) intermittent RES generators whose

output is assumed to have a fixed and stochastic component Qw,0 + εw; with E[εw] = 0 and

V ar[εw] = σ2
w. In both case we assume that RES outputs are produced by a set of competitive

generators that offers all available outputs at zero marginal cost. They are subsequently rewarded

at the price of the marginal bid. For more extensions on the diversification of energy portfolios,

see Acemoglu et al. [2017].

The total demand will be equal to:

D = Q = Qi +Qw,0 + εw (A.13)

and the inverse market demand function is given by:

P = f(D) = f(Q) (A.14)

which obeys the following conditions: (1) f(0) > 0; to ensures that there is a demand, (2) if

Q > 0 and f(Q) > 0, then f ′(Q) < 0; this condition is the common assumption that the demand

curve slopes downward, (3) if Q > 0 then Q.f(Q) ≤ M, where M is some finite number; this

condition eliminates any chance for the firms to have infinite profits.

Firm i’s total cost function is designated as Ci(qi) and obeys the following conditions: Ci(qi)

must be strictly positive for all output levels [Ci(qi) > 0 for qi > 0]; marginal cost MCi = C ′i(qi)

should be positive [C ′i(qi) > 0] and fixed cost must be non-negative [Ci(0) > 0].

Proposition 1 : The price-cost markup for the conventional generators is decreasing with

increasing wind output, i.e. d(P−C′)
dεw

< 0, if marginal costs of the strategic generators, and

thereby competitive prices, decrease with the increase of RES output
dC2

i
d2εw

≡ C ′′i,εw < 0; dP
dεw

< 0,

and conventional generation is reduced when RES integration increases dQi
dεw

< 0.
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The profit equation for a strategic conventional generator i is given by:

πi = Qi(εw)P (Qi, εw)− Ci(Qi) (A.15)

The Cournot oligopoly model assumes that oligopolists choose their output simultaneously

given their rivals’ output. From (A.15), the first-order condition can be written as:

P = C ′i,Qi − P
′
i,QiQi (A.16)

which gives:

d(P − C ′)
dεw

=
[
− P ′i,QiQi

]′
εw

= −
[
dQi
dεw

P ′Qi +QiP
′′
Qi

(∑
i

dQi
dεw

+ 1
)]

(A.17)

Using the assumption dP
dεw

< 0 and the condition from (A.16) gives:

dP

dεw
=
dQi
dεw

dC2
i

d2εw
− dQi
dεw

P ′Qi −QiP
′′
Qi

(∑
i

dQi
dεw

+ 1
)
< 0 (A.18)

Substituting (A.18) and using the assumptions
dC2

i
d2εw

≡ C ′′i,εw < 0 and dQi
dεw

< 0 gives

d(P − C ′)
dεw

< −dQi
dεw

C ′′i,εw < 0 (A.19)

Proposition 2 : The price-cost markup for the domestic conventional generators is decreas-

ing with Import in the absence of transmission constraints and increasing as network congestion

binds, if with increasing import, marginal costs of the strategic domestic generators, and thereby

prices, decrease
dC2

i
d2I
≡ C ′′i,I < 0; f ′(I) < 0 and strategic domestic generators’ output reduce when

import capacity increases dQi
dI < 0.

In the case that cross-border exchanges are taken into account, total demand will be supplied

by conventional generation and importing capacity (D = Q = Qi + I), and the inverse demand

function is given by P = f(Qi, I). For simplicity, we ignore wind output in this case. The

profit equation for a strategic domestic generator, who chooses its output given import form its

cross-border rivals, is written as:

πi = Qi(I)P (Qi, I)− Ci(Qi) (A.20)

which follows the FOC (with respect to Qi):

P = C ′i,Qi − P
′
i,QiQi (A.21)
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Calculating d(P−C′)
dI gives:

d(P − C ′)
dI

=
[
− P ′i,QiQi

]′
I

= −
[
dQi
dI

P ′Qi +QiP
′′
Qi

(∑
i

dQi
dI

+ 1
)]

(A.22)

� Without transmission constraint: I < Transmission CapacityMax

Using assumption f ′(Q) < 0 and differentiating (A.21) with respect to I gives:

dQi
dI

dC2
i

d2I
− dQi

dI
P ′Qi −QiP

′′
Qi

(∑
i

dQi
dI

+ 1
)
< 0 (A.23)

Substituting (A.23) to (A.22) and using assumptions
dC2

i
d2I
≡ C ′′i,I < 0 and dQi

dI < 0 gives:

d(P − C ′)
dI

< −dQi
dI

C ′′i,I < 0 (A.24)

� With transmission constraint: I = Fixed Transmission CapacityMax

The price-cost markup for the strategic domestic generators will be equal to −P ′i,QiQi,
which is strictly positive with f ′(Q) < 0

A.2 Postestimation tests

Table A.2.6: Summary results for first-stage regression - Demand Equation

F test of excluded instruments Under -identification Week identification

Endogenous Var F(10, 23) P-val SW Chi-sq (9) P-val SW F( 9, 23) P-val

P 8379.18 0.0000 6140.29 0.0000 653.64 0.0000
P*temp 1334.69 0.0000 7926.58 0.0000 843.8 0.0000

Table A.2.7: Summary results for first-stage regression - Supply Equation

F test of excluded instruments Under -identification Week identification

Endogenous Var F(10, 23) P-val SW Chi-sq (9) P-val SW F( 9, 23) P-val

Q* 2.38 0.0619 14.9 0.0000 2.38 0.0619
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Table A.2.8: Second stage GMM estimation results of the demand equation: Log-linear

Variables coef Robust Std.Err t stat p-values [95% Conf.Interval]

Price -0.00372*** (0.000169) -22.00 0 -0.00406 -0.00339
P*temp 0.000205*** (1.77e-05) 11.58 0 0.000171 0.000240
AR1 0.0956*** (0.000398) 240.1 0 0.0948 0.0964
Temperature -0.0151*** (0.000894) -16.84 0 -0.0168 -0.0133
Daylength -0.000216 (0.000308) -0.702 0.483 -0.000819 0.000387
Holiday -0.0688*** (0.00362) -19.02 0 -0.0759 -0.0617
Summer 0.00414** (0.00187) 2.219 0.0265 0.000483 0.00780
Spring -0.0128*** (0.00132) -9.690 0 -0.0154 -0.0102
Fall 0.00514*** (0.00156) 3.298 0.000973 0.00208 0.00819

Robust standard errors in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table A.2.9: Second stage GMM estimation results of the supply equation: Log-linear

Variables coef Robust Std.Err t stat p-values [95% Conf.Interval]

Q* -0.000261*** (7.45e-05) -3.507 0.000454 -0.000407 -0.000115
Q*solar 1.79e-05*** (5.11e-06) 3.495 0.000475 7.85e-06 2.79e-05
Q*wind 1.65e-05*** (4.89e-06) 3.377 0.000733 6.92e-06 2.61e-05
AR 1 0.00667*** (0.000823) 8.107 0 0.00506 0.00828
AR 2 0.000305 (0.000340) 0.897 0.370 -0.000362 0.000972
AR 3 0.00152*** (0.000421) 3.623 0.000291 0.000700 0.00235
AR 4 0.00169*** (0.000319) 5.284 1.26e-07 0.00106 0.00231
AR 5 -0.000726 (0.000499) -1.455 0.146 -0.00170 0.000252
AR 6 0.000790** (0.000400) 1.975 0.0483 6.05e-06 0.00157
AR 7 0.00294*** (0.000493) 5.965 2.45e-09 0.00198 0.00391
Load 0.0665*** (0.00385) 17.26 0 0.0589 0.0740
Load squared -0.000461*** (2.98e-05) -15.44 0 -0.000519 -0.000402
gas price 0.0134*** (0.00139) 9.623 0 0.0107 0.0161
Carbon price 0.00818*** (0.00133) 6.145 8.02e-10 0.00557 0.0108
Capacity Margin -0.0359*** (0.00264) -13.60 0 -0.0410 -0.0307
German wind -0.0111*** (0.00232) -4.790 1.66e-06 -0.0157 -0.00658
German solar -0.00126 (0.00162) -0.779 0.436 -0.00443 0.00191
Net exchanges Germany -0.00515 (0.00353) -1.456 0.145 -0.0121 0.00178
Net exchanges UK -0.00993** (0.00412) -2.408 0.0161 -0.0180 -0.00185
Net exchanges Belgium 0.00157 (0.00534) 0.295 0.768 -0.00889 0.0120
Net exchanges Spain 0.0301*** (0.00670) 4.491 7.10e-06 0.0170 0.0432
Net exchanges Italy 0.00166 (0.00577) 0.287 0.774 -0.00965 0.0130
Net exchanges Switzerland -0.000700 (0.00867) -0.0807 0.936 -0.0177 0.0163
Holiday -0.0776** (0.0352) -2.202 0.0276 -0.147 -0.00854

Robust standard errors in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table A.2.10: Second stage GMM estimation results of the demand equations for four sup-
samples

Variable Night trough Morning peak Afternoon trough Evening peak

Price -0.0431*** -0.0279*** -0.0247*** -0.0111***
(0.00409) (0.00353) (0.00384) (0.00282)

P*Temp 0.00434*** 0.00116*** -0.000142 0.000258
(0.000413) (0.000352) (0.000272) (0.000270)

AR1 0.785*** 0.772*** 0.721*** 0.807***
(0.00674) (0.00787) (0.00747) (0.00670)

Temperature -0.187*** -0.118*** -0.0157 -0.0262
(0.0167) (0.0208) (0.0155) (0.0165)

Daylength 0.0715*** 0.0675*** -0.0139 -0.0155
(0.00963) (0.0119) (0.0109) (0.0113)

Holidays -0.0461** -0.849*** -1.199*** -0.394***
(0.0209) (0.0465) (0.0387) (0.0296)

Summer 0.0526 -0.00827 -0.276*** -0.0692
(0.0596) (0.0792) (0.0657) (0.0636)

Spring -0.339*** -0.273*** -0.271*** -0.0476
(0.0445) (0.0532) (0.0523) (0.0490)

Fall 0.0296 0.0669 -0.0998** -0.128***
(0.0363) (0.0464) (0.0450) (0.0397)

Observations 13,846 9,893 7,940 11,904
Number of hours 8 5 4 7

Robust standard errors in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table A.2.11: Second stage GMM estimation results of the supply equations for four sup-samples

Variable Night trough Morning peak Afternoon trough Evening peak

Q* -0.00347** -0.00139* 0.0195*** -0.0275*
(0.00168) (0.000784) (0.00745) (0.0167)

Q*wind 0.000880** 9.44e-06 -0.00107** 0.00134*
(0.000429) (4.34e-05) (0.000483) (0.000801)

Q*solar 0.00302 0.000136* -0.00117*** 0.00359*
(0.00184) (7.06e-05) (0.000444) (0.00216)

AR1 0.340*** 0.212*** 0.174*** 0.407***
(0.0259) (0.0173) (0.0489) (0.0704)

AR2 0.0238** 0.0456*** 0.0636 -0.00423
(0.0119) (0.0113) (0.0471) (0.0972)

AR3 0.0523*** 0.102*** 0.0908** -0.0151
(0.00965) (0.0155) (0.0384) (0.0710)

AR4 0.0273*** 0.0587*** 0.00222 0.193
(0.00984) (0.0138) (0.0418) (0.128)

AR5 -0.0213** 0.0735*** 0.0300 -0.102
(0.0103) (0.0100) (0.0412) (0.101)

AR6 0.0255** -0.00231 0.0678** 0.130**
(0.0108) (0.00967) (0.0342) (0.0535)

AR7 0.131*** 0.0252** 0.0414 -0.0129
(0.0101) (0.0122) (0.0373) (0.0473)

Load 0.532*** 0.818*** -0.517 0.289
(0.0709) (0.138) (0.531) (0.469)

Load squared -0.00160** -0.00377*** 0.00487 0.00139
(0.000655) (0.00113) (0.00394) (0.00351)

Gas price 0.462*** 0.728*** 0.824*** 0.268
(0.0247) (0.0436) (0.102) (0.204)

Carbon price 0.200*** 0.342*** 0.496*** -0.0277
(0.0275) (0.0386) (0.111) (0.322)

Capacity Margin -0.983*** -1.265*** -1.667*** -1.410***
(0.0385) (0.0571) (0.343) (0.444)

German wind -0.320*** -0.407*** -0.571*** 0.148
(0.0589) (0.0211) (0.112) (0.261)

German solar - -0.170*** -0.691*** -
- (0.0349) (0.142) -

Net exchanges Germany 0.0714 0.114 0.316 -0.629
(0.0837) (0.0715) (0.262) (0.536)

Net exchanges UK -0.619*** -0.449*** 1.087** -0.700
(0.109) (0.138) (0.443) (1.092)

Net exchanges Belgium 0.0405 -0.729*** -1.711*** 0.536
(0.0832) (0.106) (0.324) (1.005)

Net exchanges Spain 0.395*** 0.460*** 1.043* 1.018
(0.106) (0.140) (0.621) (1.398)

Net exchanges Italy 0.123 -1.321*** -1.995*** -1.517
(0.149) (0.150) (0.478) (1.100)

Net exchanges Switzerland -0.649*** -0.597*** 0.615 0.666
(0.152) (0.202) (0.652) (1.356)

Holidays -0.00388 -13.91*** -9.175*** -0.0959
(0.233) (0.517) (1.849) (2.807)

Observations 13,846 9,893 7,940 11,904
Number of hours 8 5 4 7

Robust standard errors in parentheses; ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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