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Abstract

Climate change is now an evidence (IPCC, 2014). Less obvious is the quantification of

the impacts on economic indicators whereas it is the main driver of international aware-

ness. We compare in this paper the impacts of long-run climate and short-run weather

variations on the economic profitability of agriculture in Europe. This comparison is

made within a spatial panel econometric framework that explains the temporal and spa-

tial variability of agricultural revenues. Our econometric model takes into account both

the non-observable individual heterogeneity of the EU (FADN) regions and the spatial

auto-correlation between these regions. We use our estimation results to calculate the

marginal impacts of climate and weather variations on agricultural revenues. Our results

show that weather indicators should be preferred into revenue function estimations when

measuring climate change impacts.
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agriculture
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1 Introduction

The economic literature has focused considerable attention on climate change impacts on the

agricultural sector due to its pre-existing vulnerability to weather conditions. According to

Mendelsohn et al. (1999) five main types of approaches could be found in the literature on the

impacts of climate change on agriculture: (1) studies that rely on crop simulation models (Ciscar

et al., 2011); (2) studies that rely on cross-sectional or intertemporal analyses of yields (Lo-

bell et al.); (3) studies that use CGE (computable general equilibrium) models (Nelson et al.,

2014). (4) studies based on cross-sectional analyses of land values per hectare (Mendelsohn

et al., 2004, 1994) (5) studies based on panel (intertemporal) analysis of net revenues across

weather (Deschenes and Greenstone, 2007). The last two approaches are important approaches

used in economic studies to measure climate change impacts on agriculture.
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More recently, Blanc and Reilly (2017) provide an overview of the main approaches assessing

the impacts of climate change on agriculture. According to them, statistical tools are favoured

by economists to estimate relationship between climate and agricultural outputs. Statistical

tools are used both in the Ricardian approach based on land values (Mendelsohn et al., 1994)

and in the revenue/profit approach based on production function (Deschenes and Greenstone,

2007). These two approaches are complementary and provide differentiated impacts of climate

change on agriculture in terms of short-term and long-term considerations. On one hand, the

so-called Ricardian approach assumes that farmers have profit maximizing behaviour in the

long-term and that the land values reflect the stream of future revenues that the farmer could

gain from the best land allocation. Farmers adapt land allocation to climate averages to achieve

the highest revenues. In other words, Ricardian studies examine how long-term climate affects

farmland values across space. On the other hand, we have a revenue approach based on farmers

annual profits maximising behaviour. The revenue approach is a short-term approach in which

the revenue of the observed year is impacted only by weather conditions of this same year (see

Auffhammer et al. (2013) for a clear distinction between weather and climate variables). Or, in

the literature there are many studies using long term climate averages to estimate agriculture

revenues. In other words, within the framework of this approach, we argue that long-term

climate averages (often 30 years) lead to incorrect estimations of the impact of climate on agri-

cultural revenues, whereas current weather conditions (annual observations) do not. This is the

main argument that this paper develops.

The revenue approach was implemented in several cross-sectional studies in developing country

applications due to the availability of data as information on private land owners is often not

available to implement the Ricardian approach. Among these studies we could cite Asian (Liu

et al., 2004; Wang et al., 2009; Mendelsohn, 2014) and African (Wood and Mendelsohn, 2015)

countries as well as a panel data based study on Indian agriculture (Kumar, 2011). All these

studies argue that they are using Ricardian approach but instead of taking the land values they

take net revenues without calculations of the actualization rates for future revenue expectations.

Mendelsohn and Massetti (2017) note that the main advantage of the Ricardian approach is

that farmland value reflects the stream of future rents generated by climate, and is less vulner-

able to the yearly weather conditions. However, we argue that in the studies where the yearly

agricultural output variable is estimated (profits or revenues), it should not be defined as a

Ricardian approach, because these studies are not based on future revenue expectations. These

studies usually use long term average climate variables, whereas the agricultural revenues for

the year of observation should be influenced only by the weather conditions during this same

period. Taking long run climate averages could lead to measurement errors.

We start with methodological approach proposed by Deschenes and Greenstone (2007). Desch-

enes and Greenstone (2007) make the estimation of the impact of climate on US agricultural

sector. They argue that cross sectional hedonic equation could be misspecified and suggest to
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run panel data estimation based on the relation between yearly agricultural profits and weather

conditions. They exploit random year-to-year variation in temperature and precipitation to

estimate the changes in agricultural profits are higher or lower in years that are warmer and

wetter (Deschenes and Greenstone, 2007). The study of Deschenes and Greenstone (2007) was

criticised by Fisher et al. (2012) who argue that given the errors in data and the model specifi-

cation, a better-specified hedonic model produces robust estimates, unlike the results reported

in Deschenes and Greenstone (2007). The main limitations reported by Fisher et al. (2012)

concern (1) errors in the weather data5; (2) biased standard errors due to spatial correlation;

(3) the inclusion of state by year fixed effects which does not leave enough weather variation to

obtain meaningful estimates of the relationship between agriculture profits and weather. Being

aware of these critics, our paper will take a major part of them into account and discuss the

possible issues.

To the best of our knowledge, no previous study applied to European agriculture, adopts a

spatial-panel revenue function approach. There are few studies focusing on the study of yields

(Benjamin et al., 2017; Iglesias et al., 2012) and the major part of papers are based on Ricardian

approach, considering either the whole Europe (Van Passel et al., 2017; Vanschoenwinkel et al.,

2016; Vanschoenwinkel and Van Passel, 2018) or a single European country (Bozzola et al.,

2017; Lippert et al., 2009; Chatzopoulos and Lippert, 2015). In this paper we will test the

use of climate and weather variables in European revenue function approach within a spatial

panel framework. The aim is to compare the results and to observe if weather and climate in-

dicators lead to similar estimation results, in order to test the hypothesis that models based on

revenue function should be estimated using annual weather data and not long-averaged climate.

Finally, this paper has three main contributions. First, to the best of our knowledge, this

study is the first that uses the revenue function approach in European agriculture context. Sec-

ond, we examine different spatial agricultural revenues interaction models. Finally, we examine

and compare the use of yearly whether variations and climate data in the revenue approach.

2 Methodology

The revenue function approach assumes that each farmer have the aim to maximize income,

subject to the exogenous conditions of the farm, such as climate, soils and socio-economic

conditions. Farmers will choose endogenous inputs Xi, given market prices and exogenous

inputs ci (climate), si (soil) and zi (socio-economic and control variables) to adjust their farming

decisions in order to achieve the highest revenue:

MaxΠi = piQi(Xi, ci, si, zi)− wXi, (1)

5In their reply to these limitations Deschênes and Greenstone (2012) summarize the new estimates once the

errors reported by Fisher et al. (2012) were corrected.
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where Πi is a revenue function of the farmer for the cultivated good i at a given location, pi is

an exogenous price vector of good i, Qi describes a production technology used by the farmer,

and w is an exogenous vector of endogenous input’s prices. Knowing that farmers choose the

outputs Q and endogenous inputs X that maximize net revenues, the optimal profit or revenue,

obtained by deriving the previous equation, could be rewritten in reduced form as a function

of exogenous inputs only:

Π∗
i = Π∗

i (ci, si, zi, pi, w) (2)

We assume that all farmers will have the same structure of prices, the optimal revenue can be

rewritten as fallows:

Π∗
i = Π∗

i (ci, si, zi) (3)

The revenue approach, like it was implemented by Deschenes and Greenstone (2007) were very

poorly used following its theoretical framework. Many studies estimating net agricultural rev-

enues fallows the so called Ricardian model framework, falsely supposing that the annual net

revenues are depending on the long run climate averages. In this paper we argue that annual

net revenues are directly dependent on annual weather. The revenue approach is supposed to

capture short term farmers response to climate and short term adaptation, differently from

Ricardian approach. Thus, in this paper, we estimate the net agricultural revenue using econo-

metric spatial panel data models.

In our study, panel data take into account individual specificities, more precisely, European

FADN region specificities in agricultural practices and their behaviour changes over the time.

The use of panel data also supposes that the land values are not independent for each year, con-

trary to cross sectional data use. From a methodological point of view, panel data correspond

to observations of individuals repeated over time that enables consideration of heterogeneity

over time and between individuals. There are different ways to exploit panel data, some of

which we use in our study.

Only one paper, written by Kumar (2011), discussing different spatial models that can be used

in revenue approach of Indian agriculture. However, Kumar (2011) argue that the study is

based on Ricardian approach, and uses long term climate averages to estimate net agricultural

revenues. We argue that the revenue function models should be estimated using annual weather

data instead of climate, annual revenues being directly related to the annual weather conditions.

The main advantage of using panel data is to model heterogeneous behaviour. This hetero-

geneity may appear in the regression coefficients which may vary across individuals and time,

in which case we would talk about fixed effects model, or in the structure of the residuals, in

which case we would have a random effects model.

The most intuitive way to account for individual or time differences in behaviour, in the context

of a panel regression, is to assume that some of the regression coefficients are allowed to vary
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across individuals or over time. When these are allowed to vary in one or two dimensions, we

have the fixed effects model (Matyas and Sevestre, 1996). The fixed effects model is written as

follows:

Yit = β1Cit + β2Sit + β3Zit + αi + θt + εit, (4)

where αi represents fixed individual effects and θt is the fixed temporal effects coefficient. The

fixed effects panel model supposes that each individual (and each year) has its own model, in

other words, it states that each individual has its own reaction coefficients which are specific

to each time period (Matyas and Sevestre, 1996). Thus, fixed panel data uses the within a

single individual (or/and year) type variation, ignoring variations between individuals (or/and

years). Since this type of variation is variation within each cross-sectional unit, the fixed effects

estimator is sometimes called the “within” estimator. Because the fixed effects estimator is

based on the time series component of the data, it estimates short-run estimates (Kennedy,

2008). Intuitively, the fixed effects models should be the most relevant to estimate short run

relations between agricultural revenues and annual weather conditions.

The random effects model is interested in heterogeneity in the micro units arising from the

unobservable and omitted variables. Indeed, there are some unmeasured explanatory variables

that affect the behaviour of individuals differently (or uniformly, but differently in each time pe-

riod). Omitting these variables causes bias in the estimation, and the random effects model has

the ability to deal with the omitted variable problem (Kennedy, 2008). The random effects esti-

mator uses information from within and between estimators, making the random effects model

more efficient than the fixed effects model. Since the random effects model uses between varia-

tions, it can produce estimates of coefficients of time invariant explanatory variables. Moreover,

because the random effects estimator uses both the cross sectional and time series components

on the data; it produces estimates that mix the short-run and long-run effects (Kennedy, 2008).

The original formulation of the individual random effects model is written as follows:

Yit = β0 + β1Cit + β2Sit + β3Zit + εit, (5)

εit = αi + uit,

where the residual term εit is composed of the specific individual random effect αi and the error

term uit. The advantage of the random effects model is that it accounts for time invariant

variables which can be important in the studies on climate and agriculture, such as soil quality

or altitude.

Fisher et al. (2012) has criticized Deschenes and Greenstone (2007) on biased standard er-

rors due to spatial correlation. We take into account account this criticism by introducing

spatial interactions into panel models. The main reason is the possible existence of spatial

autocorrelation into residuals. In this case, we assume that we are in a situation where we

could have some measurement errors that tend to spill over across the boundaries of the FADN
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regions or that any unobserved shocks follow a spatial pattern. This type of spatial correlation

needs to be implemented with a Spatial Error Model (SEM):

yit = Xitβ + εit, (6)

εit = ρ

N∑
k

wikνit + uit,

where the residual term εit is composed of the spatially autocorrelated error term, where wit is

the generic element of a non negative, NxN spatial-weight matrix W, λ is the spatial autocor-

relation coefficient and νit is the spatially correlated error term, and the error term uit.

While working with spatial models, the W takes part of an important component in the spatial

analysis. The estimation procedure involves specifying the spatial weight matrix W , which pro-

vides a structure to the assumed spatial relationships. There are some types of spatial weight

matrix based on different “neighbours” defining criteria: contiguity, queen, distance, k nearest,

Gabriel. We tested few of them, but we decided to work with based on 5 nearest neighbours

standardized weight matrix. The main issue using other criteria is the geographical structure

of European regions. For example, the choice of contiguity (simple or queen) relation based

matrix, meaning that the neighbours are those which shares the same boundary, would lead

to few isolated regions, because of some Italian regions being islands. Or presenting isolated

units the W matrix can’t be invertible which can cause some issues in estimations. One other

issue was found using distance criteria. The size of European regions is very heterogeneous, for

example, in Germany the FADN regions are very small compared to the rest of Europe, and

in the Scandinavian countries the FADN regions cover very large areas. Thus, using distance

based W matrix creates a lot of spatial relations in the central part of the Europe and very

few neighbours for outer regions. The k nearest neighbours criteria allow all regions have same

number of relations in order to do not overestimate spatial relations.

In this paper we test following hypothesis: H1) Fixed effects model is the most appropriate

to estimate short-run relations; H2) Weather variables are more accurate to use than climatic

variables into revenue function model.

First, in order to verify hypothesis H1, we estimate the following econometric spatial panel

data models adapted to the net European agricultural revenues per hectare and using annual

weather data: Fixed Individual Effects model with Spatial error Autocorrelation (FEi-SEM)

and Fixed Temporal Effects with SEM (FEt-SEM), Individual Random Effects model with

SEM (RE-SEM1) and with only time variant variables like in Fixed Effects models and Indi-

vidual Random Effects model with SEM (RE-SEM2) which includes time invariant variables.

We then compare the results and models quality.

Second, to test the H2, the FE-SEM and RE-SEM estimation results, based on temperature
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and precipitation variables represented by year-by-year covering observation period 2004-2012,

will be compared to RE-SEM estimation using the long run climate averages to represent tem-

perature and precipitation variables. We will use the RE-SEM estimation for climate based

model because the Fixed effects model does not count for time invariant variables.

Finally, the primary hypothesis tests will be completed by the examination and comparison

of the marginal impacts between, on one side, FE and RE models, and, on the other side,

weather and climate based models. The marginal values are the measure of climate impacts

on agriculture and will let us to evaluate the existing differences between these models. The

marginal values are calculated as the derivative of the revenue function by climatic variable.

For example, for the temperature variable it is written as follows:

d Y

dCi
= γ̂1 + 2γ̂2C̄i, (7)

where γ1 and γ2 are combinations of β associated to climate variables and depending on esti-

mated model specification.

3 Data

We are working at the scale of European FADN regions, we have constructed a balanced panel

database for N=106 European FADN regions covering T=9 years period (2004-2012).

This paper examines climate and weather data use in the revenue function provided by JRC

data. JRC database is a set gridded climate data generated through the interpolation of daily

data from weather stations, providing daily precipitation, minimum and maximum tempera-

ture. We use JRC database to construct two sets of data. First, we calculated long term

observed climate averages for each FADN region covering the period 1979-2003. Second, we

calculate year-by-year weather variables covering the observed period 2004-2012. We consider

the challenges of panel data of the agricultural revenue and discuss the use of climate and

weather variables, provided by JRC database, in revenue function approach.

In the economic literature, two types of variables are usually used: (i) four seasons’ average

temperature and precipitation variables, with their squares, and (ii) the degree day variables

over the growing season, and total precipitation variables (yearly or covering the same growing

season) inspired by more agronomic arguments. The majority of European studies are based

on four seasons‘ averaged climate variables. Vaitkeviciute et al.6 compare and discuss the pos-

sibility of using climate variables linked to growing season and those related to four seasons, in

European agriculture case. They show that both types of climatic variables are valid to use in

6Vaitkeviciute, Chakir, van Passel, 2018. Climate variable choice in ricardian studies on European agricul-

ture. Submitted for publication.
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European based studies with Ricardian evidence. However they prevent there could be some

differences in results depending on climate variable choice. Thus, we calculate temperature and

precipitation averages for four seasons corresponding to winter (December-February), spring

(March-May), summer (June-August) and autumn (September-November).

Net farms revenues are provided by the FADN dataset and are available at the farm level

scale. We calculate the aggregated net revenue at the scale of FADN regions. The FADN

database also provides information on the Utilised Agricultural Area (UAA), including owned

UAA, and rented UAA. In this study, we calculate the share of total rented UAA. The FADN

database includes information on the representativeness of farms within a given region. We

use this information to weight all the variables provided by this FADN database to calculate

regional mean values.

Soil variables are also important in farm productivity. We use the European Soil Database for

soil texture variables that we calculated for FADN regions. The average altitude for each region

was also calculated using this database.

4 Results

We estimate Fixed effects and Random effects models with Spatial Error Model in order to

account for individual heterogeneity and spatial autocorrelation. We have tree types of models:

three models based on weather data and only with time variant variables (FEi-SEM, FEt-SEM,

RE-SEM1), one model using weather data but including time invariant variables (RE-SEM2),

and one model based on climate data and including time invariant variables. To confirm the

model choice five specification tests are calculated for our models. First, the Spatial Hausman

test (SHT) is used to test the efficiency of spatial random effects estimator. Then we also

use the joint test for spatial error correlation and random effects (LM-H), a conditional test

for spatial error correlation (BSK), and marginal random individual effects (LM1) and spatial

autocorrelation (LM2) tests, developed by Baltagi et al. (2003). The specification tests for the

models based on weather data and only taking into account time variant variables confirms the

existent spatial autocorrelation and do not reject the random effects. In contrary to two other

types of models, where the tests reject the hypothesis of spatial autocorrelation in the models.

We presume that the country fixed effects may capture information on unobservable spatial

variables. The results of these tests are reported in Table 1.

The estimation results for different models using are presented in Table 2. The first hypothesis

tests whether if the fixed effects models are the most appropriate to estimate short-run relations

between the weather and agriculture revenues. First, we ran some specification tests adapted

for spatial panel data as described in previous paragraph an presented in Table 1. These tests

do not reject the random effects model, which is a mixed model able to capture short-run and

long-run relations. Few additional tests adapted to panel data should be ran to confirm which
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Table 1: Specification tests

Hypotheses FEi-SEM, FEt-SEM, RE-SEM2 RE-SEM3

RE-SEM1

Spatial Hausman test (SHT)

H0: SEM-RE is efficient χ2
17 = 1.046 χ2

17 = 5.421 χ2
1 = 1, 781.6

H1: One model is inconsistent p = 1 p = 0.996 p < 0.001

Joint test for spatial error correlation and random effects (LM-H)

H0: σ
2
µ = λ = 0 2, 867.5 2, 445.0 2, 421.4

H1: σ
2
µ 6= 0 or λ 6= 0 p < 0.001 p < 0.001 p < 0.001

Conditional test for spatial error correlation (BSK)

H0: λ = 0 (assuming σ2
µ ≥ 0) 25.043 20.253 18.503

H1: λ 6= 0 (assuming σ2
µ ≥ 0) p < 0.001 p < 0.001 p < 0.001

Marginal test for random individual effects (LM1)

H0: σ
2
µ = 0 (allowing λ 6= 0) 53.406 49.422 49.208

H1: σ
2
µ > 0 (allowing λ 6= 0) p < 0.001 p < 0.001 p < 0.001

Marginal test for spatial autocorrelation (LM2)

H0: λ = 0 3.907 1.583 −2.568

H1: λ 6= 0 p < 0.001 p = 0.113 p = 1.99

model is better.

The models estimated coefficients, presented in Table 2, shows that results are very stable

and very close between individual fixed effect (FEi-SEM) and individual random effects (RE-

SEM1) models, especially for the statistically significant coefficients associated to temperature

and precipitation in summer. Both models predicts a concave, increasing but with decreasing

rate, relation between mean summer temperature and farmers’ revenues. By calculating the

optimal summer temperature values for European agriculture, the FEi-SEM model predicts

19.5◦C while RE-SEM1 model estimates the optimal summer temperature value to 20◦C. The

optimal temperature value indicates us in which moment the higher temperatures starts to have

a negative impact on agriculture. Knowing that in the observed period summer temperature

goes from 10.6◦C (minimum) to 26.1◦C (maximum), with the average of 18.7◦C, we can certify

that in Europe the optimal temperature predicted by these model has been already reached

and some regions are suffering from too high summer temperatures.

Moreover, we can compare the total marginal impacts of climate on agriculture revenues of all

models using weather data and estimating short run climate impacts on agriculture. The total
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Table 2: Spatial panel data models estimations

Dependent variable: Net revenue per 100 ha

Weather Climate

FEi-SEM FEt-SEM RE-SEM-1 RE-SEM-2 RE-SEM-3

Temperature winter −0.003 −0.633 0.046 −0.020 10.448

(0.187) (0.669) (0.193) (0.192) (10.448)

Temperature winter squared −0.022 −0.132∗∗∗ −0.021 −0.023 −0.809

(0.018) (0.046) (0.018) (0.018) (0.525)

Temperature spring −0.126 1.476 0.184 −0.361 21.993

(0.883) (1.953) (0.862) (0.894) (21.932)

Temperature spring squared 0.017 0.047 0.009 0.024 −0.184

(0.041) (0.099) (0.042) (0.042) (0.925)

Temperature summer 4.089∗∗ 5.899 4.185∗∗ 4.084∗∗ 21.659

(1.899) (3.737) (1.985) (1.965) (27.704)

Temperature summer squared −0.105∗∗ −0.202∗∗ −0.105∗∗ −0.108∗∗ −0.720

(0.051) (0.098) (0.053) (0.052) (0.704)

Temperature autumn −1.439 −5.086∗∗ −1.350 −1.751∗ −66.277∗∗∗

(0.920) (2.524) (0.952) (0.951) (25.561)

Temperature autumn squared 0.030 0.234∗∗ 0.030 0.041 1.958∗∗

(0.037) (0.095) (0.038) (0.038) (0.902)

Precipitation winter 0.016 0.100 0.019 0.009 −0.529

(0.041) (0.106) (0.044) (0.043) (0.651)

Precipitation winter squared 0.0001 −0.0004 0.00004 0.0001 0.003

(0.0003) (0.001) (0.0003) (0.0003) (0.004)

Precipitation spring −0.067∗ 0.041 −0.062 −0.072∗ 0.899

(0.040) (0.114) (0.043) (0.042) (1.595)

Precipitation spring squared 0.001∗∗ −0.0001 0.001∗ 0.001∗∗ −0.010

(0.0003) (0.001) (0.0003) (0.0003) (0.011)

Precipitation summer −0.077∗∗ −0.137∗ −0.078∗∗ −0.076∗∗ −0.200

(0.030) (0.078) (0.032) (0.031) (1.090)

Precipitation summer squared 0.0004∗∗∗ 0.001∗ 0.0004∗∗ 0.0005∗∗∗ 0.001

(0.0002) (0.0004) (0.0002) (0.0002) (0.006)

Precipitation autumn −0.043 −0.045 −0.039 −0.047 0.172

(0.033) (0.091) (0.035) (0.034) (1.013)

Precipitation autumn squared 0.0002 0.0002 0.0002 0.0002 0.001

(0.0002) (0.0005) (0.0002) (0.0002) (0.006)

Rented share −0.139∗∗ −0.267∗∗∗ −0.173∗∗∗ −0.220∗∗∗ −0.235∗∗∗

(0.071) (0.036) (0.056) (0.066) (0.070)

Population per ha 0.825 0.750

(0.583) (0.563)

Clay −1.299 −2.006∗

(0.954) (1.061)

Sand −0.903 −1.045∗

(0.586) (0.598)

Altitude 0.003 −0.005

(0.008) (0.018)

AT −20.867 −25.787

BE 1.835 −7.062

DE −8.331 −21.202∗∗

DK −15.433 −16.944

EL 2.362 26.774

ES −7.324 7.414

FI −14.690 11.607

IE −21.974 −37.076∗

IT 2.956 16.379

LT −19.351 −27.138

LU −6.486 −16.300

LV −15.730 −16.787

NL 1.090 −9.142

PL −14.244 −26.397∗

PT −8.424 −16.066

SE −23.356∗∗ −26.847

SI −25.477 −25.765

UK −19.130∗∗ −30.373∗∗

Constant −7.277 77.487 229.403

(18.310) (49.484) (170.725)

rho 0.122∗∗ 0.251∗∗∗ 0.136∗∗ 0.105∗ 0.118∗

(0.051) (0.047) (0.050) (0.047) (0.051)

phi 7.214∗∗∗ 5.764∗∗ 4.769∗∗∗

(1.072) (0.868) (0.726)

RMSE 19.502 19.673 19.076 17.117 15.902

Note: N=106; T=9; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Figure 1: Total marginal effect of weather on agricultural revenues

marginal values per FADN region for these models are presented in Figure 1 and the average

values per country are reported in Table3. The fixed effects models as well as the RE-SEM1

model predict similar marginal impacts, with positive impact for the northern Europe and the

negative impacts in Southern regions. However, the RE-SEM2 model, which includes time

invariant variables and controls for fixed country effect, is more pessimistic than previous tree

models. RE-SEM2 predicts negative marginal impacts for almost all the European regions,

except few northern FADN regions, but negative impacts for all Europe if looking at averages

by countries(3).

Based on these results it is not possible to to favour one of the models, unless one relies on

economic intuitions. Noticing the stability of results for the models FEi-SEM, FEt-SEM and

RE-SEM1, these models seems to be all adapted to measure short run climate impacts on agri-

culture revenues. We will favour the FEi-SEM model for further comparison.

The second hypothesis tests whether the weather variables are more accurate to use in the

revenue function than the climate variables. We start to examine this hypothesis by approach-

ing the estimated RE-SEM3 model in the Table 2. First, we notice that estimated statistically
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Table 3: Total weather and climate marginal values in percentage of net agricultural revenue

per 100 ha

Country FEi-SEM FEt-SEM RE-SEM1 RE-SEM2 RE-SEM3

AT −0, 06 0, 21 0, 34 −0, 43 −4, 37

BE −0, 18 0, 25 0, 19 −0, 48 −2, 83

DE −0, 22 0, 11 0, 17 −0, 55 −4, 05

DK 0, 04 0, 51 0, 46 −0, 31 −2, 58

EL −1, 33 −0, 74 −1, 02 −1, 52 2, 45

ES −0, 89 −0, 38 −0, 56 −1, 11 0, 30

FI 0, 18 0, 32 0, 67 −0, 33 −6, 47

FR −0, 40 0, 05 −0, 05 −0, 68 −2, 37

IE 0, 27 0, 38 0, 66 −0, 04 −3, 83

IT −0, 84 −0, 30 −0, 50 −1, 09 0, 52

LT −0, 14 0, 26 0, 28 −0, 55 −5, 54

LU −0, 24 0, 10 0, 13 −0, 56 −4, 45

LV −0, 08 0, 29 0, 35 −0, 50 −5, 56

NL −0, 11 0, 35 0, 26 −0, 42 −2, 14

PL −0, 28 0, 10 0, 12 −0, 64 −4, 57

PT −1, 01 −0, 22 −0, 72 −1, 14 3, 12

SE 0, 22 0, 26 0, 69 −0, 25 −6, 04

SI −0, 48 −0, 13 −0, 12 −0, 79 −3, 22

UK 0, 24 0, 44 0, 64 −0, 09 −3, 21

significant coefficients in climate based model (RE-SEM3), associated to autumn tempera-

ture, are very high, giving the average marginal value of autumn temperature equal to -20.4%.

Moreover, these coefficients are the only ones statistically significant in this model, or the tem-

perature in autumn should not be the only determinant for the agricultural revenues in Europe.

The tests of the H3 can be completed by the comparison of marginal values presented in Figure

2. We calculated the total marginal impacts for two of our models: FEi-RE7 using weather data

and RE-SEM3 based on climate data. Comparing maps we observe an important differences

between model using weather and the one using climate variables. In the climate based model

the marginal values have significantly larger range (from -8% to +8%) and proposes a counter

7We chose to compare climate based results with a fixed effects model because we argue that fixed effects

models are the best adapted to estimate short run relations between weather and agriculture revenues. Never-

theless, a similar comparison can be made with other estimates models and their marginal values presented in

Table 2 and in Figure 1.
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intuitive marginal impacts. This model suggests that warmer and wetter climate would be

harmful to the agriculture in the central and northern European regions, and that southern

regions would benefit from the warmer climate.

Weather based model is represented on the left of the Figure ??. The predicted marginal

values are more intuitive than in climate based model. Thus, the results differ significantly for

models based using weather data and the model using climate data. We accept the H2 based on

the analysis. This is the major contribution of this paper and proves that the climate impacts

estimations based on revenue function approach should not use the climate variable but the

annual weather data which is directly related to annual farmers revenues.

Figure 2: Total marginal effect of weather and climate

5 Conclusion

Understanding the potential effects of climate change on economic outcomes in agriculture is

central to identify levers for adapting to the changing climate. Our study proposes a climate

change impacts valuation at the EU level using agricultural revenue approach in a spatial panel

framework. We compared the impacts of short-run weather variations on the economic prof-

itability of European agriculture using Fixed effects and Random effects with Spatial Error

models. Our models are estimated at the EU scale using a balanced panel database for N=106

European FADN regions covering T=9 years period (2004-2012).

Our paper has tree main contributions to the literature. First, this is the fist paper adopting
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the revenue approach to measure climate impacts on European agriculture. Previous European

studies used Ricardian approach to estimate long-run relationship between climate and agri-

cultural activity. We found that our models estimates negative climate impacts on agricultural

revenues for southern regions, and negative impacts for Northern regions. It is interesting to

notice, that even if other studies made on European agriculture used different methods, we

found similar results.

Second, we estimate climate change impacts taking into account for spatial autocorrelation

and individual heterogeneity of EU regions using the revenue function approach. The revenue

function approach was proposed by Deschenes and Greenstone (2007) to estimate short-term

impacts of climate on agriculture. Their paper was criticized because it did not took into ac-

count the spatial autocorrelation. We took this critique into account and we estimated all of

our models with Spatial Error Model. We also ran some statistical specification tests to confirm

the presence of spatial autocorrelation in our models.

Third, we discuss the relevance of using variables based on annual weather variations instead

of climate data in the revenue function approach. This hypothesis was one of our main mo-

tivation for this study. The revenue function approach was implemented by Deschenes and

Greenstone (2007), but it was very poorly used as their initial model. The most common use

of the agricultural revenues as the dependent variable was in the studies based on Ricardian

framework, and, thus, long term climate averages. We argue that agriculture revenues are the

annual data directly impacted by the annual weather conditions, and not by the 25 or 30-years

average past climate. In this study we compared the estimations based on weather data and

those based on climate data. our results show a significant differences in the estimated impacts.

Thus, we argue that climate data is not relevant to use in our revenue function based analysis

on European agriculture.
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Baltagi, B. H., Song, S. H. and Koh, W. (2003). Testing panel data regression models with

spatial error correlation. Journal of econometrics 117: 123–150.

Benjamin, C., Gallic, E. et al. (2017). Effects of Climate Change on Agriculture: a Euro-

pean case study. Tech. rep., Center for Research in Economics and Management (CREM),

University of Rennes 1, University of Caen and CNRS.

Blanc, E. and Reilly, J. (2017). Approaches to assessing climate change impacts on agriculture:

An overview of the debate. Review of Environmental Economics and Policy 11: 247–257.

Bozzola, M., Massetti, E., Mendelsohn, R. and Capitanio, F. (2017). A ricardian analysis of the

impact of climate change on italian agriculture. European Review of Agricultural Economics

45: 57–79.

Chatzopoulos, T. and Lippert, C. (2015). Adaptation and climate change impacts: A structural

ricardian analysis of farm types in germany. Journal of Agricultural Economics 66: 537–554.
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